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ABSTRACT

The problem of enhancement and bandwidth compression
of noisy speech is formulated as a parameter esimtation
problem, in which speech and its model parameters are
estimated from the noisy speech based on the MAP estimation
procedure. Such an approach leads to two algorithms
which require solving sets of linear equations in an itera-
tive manner. Some approximations of the two algorithms
lead to two systems which are computationally simpler
than the two algorithms by taking advantage of a-high
speed FFT algorithm. As a preliminary investigation into
the performance of the class of systems developed, two
systems are implemented and applied to both real and
synthetic speech data. An objective and informal subjec-
tive evaluation indicate that the systems implemented
perform well as ernhancement and gotential bandwidth com-

pression systems of noisy speech.
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CHAPTER I INTRODUCTION

I.1l Introduction

Degradation of speech by additive noise occurs in
a number of practical situations. For example, the speech
of a pilot in a plane communicating with the ground control
is degraded by the airplane noise. Another example is
the speech of a lecturer recorded in a noisy lecture hall.
The corrupting noise generally reduces [l] both the
intelligibility and the quality of speech. Furthermore,
the performance of many narrow-band communcation systems
degrades quickly [(2,3] as the speech to noise ratio
decreases. Thus, techniques for enhancement and bandwidth
compression of noisy speech have a variety of applications.

In developing systems for speech enhancement, an
important task is defining the goal of speech enhancement.
A clear definition of this goal can potentially provide
an objective criterion on the basis of which speech enhance-
ment systems can be developed. Such a goal also provides
a criterion for evaluating the performance of a system for
the particular_application under consideration. In
general, speech enhancement implies a subjective improve-
ment of the speech such as increased intelligibility and
quality, reduced listener fatigue, etc. It is important
tonote that the subjective improvement, even though
related, is not necessarily the same as the speech to

noise ratio increase. For example, a speech processing
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system which eliminates unvoiced segments and low-pass

filters voiced segments of speech degraded by wide band
additive noise may increase the overall S/N ratio but

probably is not a speech enhancement system in most

practical applications. .

Another important aspect of developing a speech

SO o T ko TR pam SRS 2 ebrimmen e

enhancement system is to accurately assess what information .
can be assumed about the speech and the background

noise. Given a noisy speech signal with no assumptions

of the speech or noise, there is little that can be done

to enhance the speech signal. A general rule for any

problem requiring the separation of individual signal
components (combined by addition, convolution, etc.) is
that the more we know about each compohent, the better

we can solve the problem. Depending on the nature of the
corrupting noise, some information of the noise may be
obtained from the knowledge of the source, or from actual

‘ measurements. About speech, a great deal is known from :

P T g ST T, AT o, 1 UMD VO

the vast research efforts in the general area of the speech
écmmunications. We know a great deal about the human
speech production mechanism and also have some understand-
ing of the human perception of speech. In principle,

we can attempt to incorporate everything we know about
speech in developing a speech enhancement system. How-

ever, some of our knowledge is qualitative or complicated {

1 and its incorporation into such a system may be very
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difficult. For example, human speech has linguistic
constraints imposed by the rules of the language. But

to incorporate such knowledge in a system for speech
enhancement is probably a difficult task. Thus, the
extent of our knowledge of speech that can be incorporated
is limited by our capability to develop and implement
systems that can exploit such available knowledge.

In developing a speech enhancement system, two
different approaches can be taken. One is the "noise
removal" approach in which a system is developed to elimi-
nate as much background noise as possible with as little
speech degradation as possible. The other approach is
the "reconstruction" approach in which the speech parameters
sufficient for reconstruction are estimated and then
speech is reconst.:.ucted based on the estimated parameters.
Which approach is better for speech enhancement depends
on many factors such as how much we know about spesch.
However, for relatively high S/N ratios, it is expected
that the noise reduction approach is better than the
reconstruction approach since the latter generally
changes the input speech.

Indecvendent of which approach is taken, the essence
of a speech enhancement system is an algorithm that incor-
porates, in some optimum manner, as much as vossible of

what we know about speech and the background noise. The

optimality condition, ideally, shoculd be based on the
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specific goal of speech enhancement. In general, such

a condition is unknown or guite complicated since a
subjective guantity such as speech intelligibility can not
easily be related to a measurable physical quantity that
may be used as a criterion for optimality. In the

absence of such a criterion or if the resulting system
becomes highly complex even in the presence of such a
criterion, we may consider a suboptimal procedure or
define the optimal condition to be optimum in a different
sense such as the maximum likelihood sense.

Suppose we have formulated an algorithm that
incorporates our knowledge about speech and the background
noise in some optimum manner, then the task rerains to
evaluate the performance of the system and estimate the
implementation cost. In general, the performance improve-
ment of a speech enhancement system can only be shown by
an adequate evaluation. Many systems that have been
proposed for speech enhancement provide apparesnt improve-
ment in the S/N ratio, but on careful evaluation [4,5,6]
in fact reduce intelligibility. If the system proposed
is sufficiently complex such that the implementation cost
is too high relative to the system performance, then an
alternative procedure has to be considered. Under such a
circumstance, we may have to go back to the beginning
and redefine the goal of speech enhancement or reconsider

the types of knowledge of speech and the background noise
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to be incorporated intc a speech enhancement system.
Thus, developing a sveech enhancement system under a
specific objective and cost constraints requires a
repetitive procedure that begins from a clear definition
of the goal of speech enhancement and ends with a decision
based on the evaluation of the system performance and
estimation of the implementation cost, but probably after
some iterations.

The problem of bandwidth compression of noisy speech
is closely related to the speech enhancement problem.
For example, a successful speech enhancement system with
the reconstruction approach has the potential to be used
as a bandwidth compression system for noisy speech.
Alternatively, the noise reduction approach can be used as
a pre-processor for a bandwidth compression system. Con-
sequently, the approach to developing a bandwidth compres-
sion system for noisy speech is essentially the same as
that for a speech enhancement system except for some
additional considerations such as coding the speech para- ]
meters, the degree of bandwidth compression desired,
etc. In fact, assuming thé 'same knowledge of speech and
the background noise, and using the same optimal criterion ’
for both a speech enhancement system and a bandwidth
compression svstem, we would expect that the speech

enhancement system would look very similar tc the bandwidth

compression system. The only major difference would be
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that for the speech enhancement system, the speech

could be generated either by the noise removal or

3 reconstruction approach whereas for the bandwidth
compression system, speech must generally be reconstructed.
1 The problem of speech enhancement has received

a great deal of attention in recent years and numerous
systems have been proposed to enhance degraded speech.
Nevertheless, significant improvements in speech intelligi-
bility or guality in practical situations have not yet been
demonstrated by any of the existing systems. Part of

the problem appears to be that the approaches taken in

developing various speech enhancement systems capitalize
very little on our knowledge of speech. The proposed
systems differ primarily in how the small amount of
knowledge about the speech incorporated into the system
is exploited and how the resulting speech is generated.
It will become clear in our discussions in Chapter II
that if we follow the same approach that has led to the
various existing systems, we can easily generate systems
at a faster rate than we can evaluate their performance
or even implement them. Regarcdless of their performances,
if we develop a speech enhancement system capitalizing
more fully on our knowledge of speech in an "optimal"
manner we would expect, in general, a better performance.
In this dissertation, we develop systems for enhancement

and bandwidth compression of noisy speech by attempting
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to "optimally" incorporate a specific underlying speech
model. The objective of this dissertation is, of course,
to develop séeech enhancement and bandwidth compression
systems that are potentially applicable to practical situa-
tions. An equally important objective of this dissertation
is to suggest tﬂe direction of other future research
efforts by illustrating an example of a structured and
theoretical approach for incorporating more of what we

know about speech to develop enhancement and bandwidth

compression systems of noisy speech.

I.2 Scope of Thesis

In this dissertation, various speech enhancement
systems proposed in the literature are summarized and
related to each other in a more common framework. Some of
the speech enhancement systems which appeared to be
promising were studied more carefully and were evaluated
in terms of their performance in improving speech
intelligibility. As an attempt to optimally incorporate
more of what we know about speech in developing systems
for enhancement and bandwidth compression of noisy speech,
a parameter estimation problem is formulated. The
parameter estimation problem is then considered for both
noise-free and noisy speech. For noise-free speech,
different points of view such as Maximum Likelihood

approach (7,8], Maximum A Posteriori estimation approach,
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and Kalman filtering approach [9] are reviewed carefully
and related to each other and to the conventional linear
prediction analysis. For noisy speech, the parameter
estimation problem is shown to be generally non-linear.
Therefore, two "suboptimal" procedures which have linear .
implementations are developed. 1In addition, two systems

for bandwidth compression and enhancement of noisy speech
which are computationally simpler than the linear imple-
mentations are developed by approximating the linear imple~-
mentations. As a preliminary investigation into the per-
formance of systems developed in this dissertation, a

small subset of the systems are implemented and applied

to both synthetic and real speech data. An objective and
informal subjective evaluation indicate that the implemented
systems perform well as bandwidth compression and speech
enhancement systems at various S/N ratios. Finally, a
number of potential areas of study which are not performed
as a part of the thesis but are within the scope of the
theoretical results obtained in the thesis are summarized
and a possible direction of future research in this afea

is suggested.

I.3 Summary of Chapters
In Chapter II, various existing speech enhancement
systems are summarized and related to each other in a common

framework. 1In Chapter III, we discuss a specific model of
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speech and the Maximum A Posteriori (MAP) estimation
approach taken in this thesis to estimate the speech model
parameters. In Chapter IV, the MAP estimation procedure
for noise-free speech is discussed. The MAP estimation
procedure under different assumptions leads to different
sets of equations to solve, two of which are equivalent

to the covariance and correlation method of the linear
prediction analysis. In Chapter V, we discuss the MAP
estimation problem for speech degraded by additive random
noise. The theoretical results in this chapter will lead
to two algorithms that require solving sets of linear
equations in an iterative manner to estimate the speech
model parameters from the noisy speech. 1In Chapter VI,

we develop two systems based on the algorithms developed
in Chapter V. The two systems developed are approxima-
tions of the two algorithms in Chapter V and are computa-
tionally simpler than the two algorithms. In addition

to the two systems, we develop an "ad-hoc¢" system primarily
for the comparison of the two systems developed in this
thesis with other speech enhancement systems previously
proposed. In Chapter VII, the performance of the three
systems developed in Chapter VI in estimating the speech
model parameters is qualitatively demonstrated by various
examples base§ on both synthetic and real speech data. 1In
Chapter VIIi, the performance of the three systems is

discussed in greater detail and gquantitatively based on the
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results of both the objective and subjective tests. The
objective tests are based on the synthetic data and an
objective criterion which reflects the perceptually
important aspects of the speech parameters. The subjec-
tive tests are divided into two parts, one part correspond-
ing to the bandwidth compression of noisy speech and the

second part corresponding to speech\g§nhancement. The

comparison of various systems in terms of bandwidth compres-

sion are based on the synthesized sentences from the speech
model parameters obtained by the developed systems. 1In
the case of speech enhancement, two cases are considered.
In the first case, speech is generated by the noise reduc-
tion approach. 1In the second case, speech is generated by
a compiete analysis/synthesis systems. In all cases of
the subjective tests, the evaluation is informal and based
on a few sentences spoken by both male and female speakers
judgyed by listeners with no or some previous experience

in the subjective tests. 1In Chapter IX, we suggest a
direction and some potential areas of future research. 1In
Chapter X, we conclude the thesis by summarizing the main

results of this dissertation.

N 488N ARSI NI,
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CHAPTER II SURVEY OF SPEECH ENHANCEMENT TECHNIQUES

II.1 Introduction

A number of techniques have been previously proposed
for the enhancement of noisy speech. The purpose of this
chapter is to summarize various speech enhancement tech-
nigues in a common framework and relate them to the band-
width compression systems of noisy speech. 1In Section
II.2, various speech enhancement systems are summarized
and related to each other. 1In Section II.3, we summarize
the performance of some of the systems discussed in Section
II.2. Some of the results are based on an informal

listening or a formal speech intelligibility test conducted

in this research and some others are based on the studies
by other researchers. In Section II.4, we discuss various
bandwidth compression systems which are based on the
speech enhancement systems summarized in Section II.2. In
Section II.S5, we discuss the motivation for a new approach
to the problem of speech enhancement and bandwidth

compression of noisy speech. 1

II.2 Speech Enhancement Techniques
. IT.2.1 Adaptive Comb Filtering Method
i. . Comb filtering for speech enhancement is based on the
; notion that voiced sounds are periodic with a period that
Sl corresponds to the fundamental frequency. Since the inter-

fering signals in general have energy in the fregquency
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regions between the speech harmonics, a comb filtering

operation in principle can reduce noise while preserving

speech signals to the extent that information of the
fundamental frequency is available and periodicity of
speech is strictly preserved. Capitalizing on this knowl-
edge, a comb filtering operation that passes only the
harmonics of speech was first applied by Shields [10]

to enhance degraded speech. Frazier [11] later observed
that even with accurate fundamental frequency information
Shields' adaptive comb f:ltering method distorts speech
signals significantly due to the time varying nature of
speech sounds. To reduce some of this distortion, Frazier
suggested an adaptive comb filter [l1l] which adjusts
itself to variations in the fundamental fregquency. A
further improvement on Frazier's algorithm on treating

the transition regions between voicing and unvoicing was
mady by Lim (S]. 1In Frazier's algorithm, when voiced
sounds near the transitions are processed, the adaptive
comb filter extends over the unvoiced sounds due to the
filter length which causes some distortion. By setting

the filter coefficients that extend over unvoiced sounds

, to zero, Lim (5] found that a better performance can be

} i. ) obtained.
) Comb filtering generally reguires accurate pitch
- information. Parsons (12] developed a system which is
1' similar to comb filtering but the pitch information is not
P
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obtained separately but built into the system. More
specifically, in an application to a competing speaker
environment, each of the local spectral peaks in a high
resolution short time Fourier transform of voiced sounds
is distinguished between the main speaker and a competing
speaker. Then speech is generated based on the spectral
contents that correspond to the peaks of the main speaker.
Systems based on comb filtering have been evaluated
in this research and by other researchers and the results

are summarized in Section II.3.l.

IT.2.2 Correlation Subtraction Method

The correlation subtraction method for speech enhance-
meﬂt is based on the notion that if additive noise is
uncorrelated with the signal, then the correlation of the
signal equals the noise correlation subtracted from the
correlation of the observed signal. More specifically,
when a signal is degraded by additive background noise,

a noisy signal y(n) can be represented by
y(n) = s(n) + d(n) (2-1)
in which s(n) and d(n) represent the signal and the back-

ground noise (or disturbance) respectively. Multiplying

both sides of equation (2-1) by y(n-k) and taking the




expected value,

E{y(n)+-y(n=-k)] = E[s(n)+*s(n-k)] + E[d(n)-d(n=k)]

+ E(d(n) *s(n-k)] + E{d(n-k)+s(n)] (2~2)

If s(n) is assumed to be uncorrelated with d4(n), the last

" two terms in equation (2-2) disappear and thus

Ely(n) *y(n-k)] = E{s(n)+s(n-k)] + E[(d(n)-d(n-k)] (2-3)

If s(n) and d(n) are assumed to be stationary so that the
) expectation of the two functions depends only on their
time differences, equation (2-3) with a change of variables

can be written as

Ry(n) = Rs(n) + Rd(n) (2-4)
in which R_(n) represents E[x(2)x(2-n)], the correlation
of x(n). Fourier transforming equation (2-4) leads to

. Py(w) = Ps(w) + Pd(w) (2-5)

.

' in which Pt(m) represents F[Rx(n)] = 7 Rx(n)'e-an, the
h n=-

e power spectrum of x(n). It is clear from equation (2-4)

that the subtraction of R,(n) from Ry(n) leads to Rs(n) and

d
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thus the name "correlation subtraction” method.
In the case of speech, the correlation function can
not be expressed as Rs(n) since speech can not be considered
stationary. Thus we define the short time correlation of

speech ¢s(n) as
og(n) = Qg_w s, (%) +s  (2-n) (2-6)

in which sw(i) represents the windowed speech waveform.

One important difference between ¢s(n) and Rs(n) is ¢s(n)
can be defined for non-stationary signals as well as for
stationary signals. Since yw(n) = sw(n) + dw(n), multiply-

ing both sides with yw(n-k) and summing over all n leads to

= - - 9. 2=-7)
¢s(n) ¢y(n) ¢d(n) 2 ¢sd(n) (
where
¢y(n) = zz-m Y, () ry (i-n),
94(n) = zz-m 4, (%) +d (i-n),
and

-]

dggm) = [ s (2)ed (2-n)

A==

Egquation (2-7) is exact without any approximations.

We will find that a number of speech enhancement systems
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summarized in this chapter differ primarily in how ¢s(n)

is specifically estimated and how speech is generated

once ¢s(n) is estimated. We will also find that in various
speech enhancement systems, equation (2-7) is a starting
point for estimating ¢s(n) from y(n). Before we discuss
how ¢s(n) is specifically estimated in the correlation
subtraction method, it is worthwhile to note why it is
important to attempt to estimate @S(n) accurately. From
equation (2-6) ¢_(n) is related to ]Sw(w){, the magnitude
of the discrete time Fourier transform of sw(n), by
% .
s, 1% = Flo_(m1 = [ o (m-e7Ion
n=-
Thus the attempt to estimate ¢s(n) more accurately is
equivalent to attempting to preserve the short time
spectral information of speech }Sw(w)l which is known ([13]
to be important for both the intelligibility and guality
of speech.
In the correlation subtraction methed, cs(n) is
estimated based on equation (2-7). From the windowed
(n)

d
and @sd(n) can not be obtained exactly from y(n) unless

noisy speech yw(n), $Y(n) can be directly computed. 9

d(n) is exactly known and in the correlation subtraction

methoed, (n) and

] :d
20>

:sd(n) are approximatedé by E[Jd(n)] andé
Sd(n)]. Fer a zerc mean <d(n) uncorrslated with s(n),

E[¢sd(n)] equals zero and therefore eguation (2-7) can be

-
n - : . L .
)
. \ o A ————— il i uﬁ_ﬂm—.———
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approximately written as

¢s(n) = ¢y(n) - E[¢d(n)] (2-9)
E[¢d(n)] can be obtained either from the assumed known
statistics of d(n) or by an actual measurement from the
background noise in the intervals when speech is not

present. Fourier transforming equation (2-9),

s @ 1% =y w)|? - EL]D (w)|?] (2-10)
Based on equations (2-9) and (2-10), ¢, (n) and Isw(w){2 are
estimated as
¢s(n) = qby(n) - E[¢d(n)] (2-11la)
and
s ) 1% = jy w1? - E(]p, w) ] (2-11b)

From equation (2-1llb), !8;(m)|2 is not guaranteed to be
ncon-negative. This is because there is no built-in
mechanism in the above estimation procedure to force ¢;(n)
to correspond to the short time correlation of some real
sequence. When such a situation dces occur, a number of

different arbitrary steps mav ke taken. 1In scme studies,

the negative values are made gcsitive by changing the sign.
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2

In some other studies ISw(w){2 is set to zero if |Yw(w)[
is less than E(|D (w)|%].

Given an estimate of ¢_(n) or iSw(w)[, there are a
number of different ways to generate speech. One method
which is popular in the‘class of systems related to some
form of spectral subtraction is to approximate ¥Sw(u),
the phase of Sw(w), by iYw(w) and then generate sw(n)
or Sw(w) by

348 (w)
w (2-12a)

S (w) = |S (w)]-e
W w

and

. (a) F‘l[s;(w)] (2-12D)

A typical algorithm for speech enhancement by the correla-

tion subtraction method is shown in Figure 2.1. The

system in Figure 2.1 has been evaluated in this research

and the results are summarized in Section II.3.2.
Generating s;(n) by equation (2~12) corresponds to

taking the noise reduction approach for speech enhancement.

As we discussed in Chapter I, it is possible to take the

reconstruction approach as we'll see shortly.

II.2.3 Speech Enhancement by a Voice Excited Voccder
Magill and Un [l4] developed a speech enhancement

system by a voice excited LPC vocoder when the background
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Windowed Noisy Speech yw(n)

Swtatl={ 1Yol ~E [lowu.,)l’]}i
£ Swlw) =L Ywlw) for IYu(wif'> E[IDuwwif’ ]

O otherwise
| L | ]

Estimated Windowed Speech swin)

Figure 2.1 A typical speech enhancement system by the

correlation subtraction methed

- - e
.
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noise is white. The system information, namely the

LPC coefiicients, is obtained by the correlation method

of the linear prediction analysis in which the shor+ time
correlation of speech is estimated by the correlation
subtraction method discussed in Section I1I.2.2. For

the source information, the noisy speech is low pass
filtered at 600 Hz and then non-linearly distorted to
broaden its bandwidth. This is based on the notion that

voiced speech generally decays. at 6 db/octave rate and

therefore the low frequency components are least degraded

by additive white noise. Speech is then generated based
on the estimated source and system information.

The system by Magill and Un is identical to the
correlation subtraction method in estimating ¢s(n)
from y(n). The difference lies in how speech is generated

-~

based on the estimated bs(n). The reconstruction approach

taken in this system has a disadvantage in that the

source information has to be obtained in some manner.
However, it has the advantage that the speech enhancement
system can be used not only as a pre-processcr fcr various
bandwidth compression systems of noisv-free speech, but
also as a bandwidth compression system itself. The perfor-

mance of the system by Magill and Un is not Xnown.

II.2.4 INTEL System

Weiss, et al. [13] developed a sreech enhancement




system called INTEL or "Intelligibility Enhancement by
Liftering". The INTEL system has several versions. One
early version is based on the notion that in the short
time correlation domain speech is in general more spread
from the origin than the background noise such as white
noise. Therefore some form of gating out (liftering)
the low time region of the short time correlation of
noisy speech may eliminate more noise components than
speech and thus may lead to some speech enhancement.
When a system based on this method was implemented by
Weiss, et al. [15] and also in this research, the perfor-
mance of the system was found to be rather poor.

Another version of the INTEL system which in a sense
is a generalization of the correlation subtraction method
has been studied in some detail in this research. The
INTEL system referred from this prnint on corresponds to
this version of the INTEL system. In Section II.2.2,
it was shown that the correlation subtraction method
corresponds to estimating the short time correlation of
speech o_(n) by FT[]Y, (u) %1 - 2tr" D, @) [21). Weiss,

et al. simply replaced the squaring operation with an

arbitrary positive real constant "a". In this method, then,
bydefining;b;(n) to be F—l[lsw(m)(a], @;(n) is estimated by
F-l[le(u)!a] - E[F_I[EDW(»)Ia]]. Based on this estimate

of 0é(n) and the assumption that isw(w) equals iYw(m),

speech is generated. The speech enhancement system proposed
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by Weiss, et al. is shown in Figure 2.2.

The algorithm in Figure 2.2 can be simplified both

computationally and conceptually by recognizing that the
expectation and Fourier transform operations are linear
and hence can be inter-changed. Such a simplified system

is shown in Figure 2.3. The figure clearly shows that

R B Y Y I e v

the INTEL system is one way of estimating the short time
spectral magnitude of speech. 1In Figure 2.3 when [Sw(w)l

obtained is not positive, it is set to zero for the

AN PT————y

similar reason discussed in Section II.2.2. The perfor-

mance of the INTEL system is summarized in Section I1I.3.2.

II.2.5 SABER Method
Boll [16] developed a speech enhancement system
called SABER or "Spectral Averaging for Bias Estimation

and Removal". In this method, |S (w)| is estimated by

T e SN P g — 5 YR | T S S e

subtracting E{'D (u)'] from a local average of le(u)!.

More specifically, it is assumed that

wn
3
"
Xl
=~

¥, ()], - E(ID, (w) ] (2-13a)

where 1Yw(u)[i represents IYw(»)I obtained from the ith
segment oI the noisy speech and M is the number of consecu-
tive windows used for local averaging.

To relate the SABER method to the INTEL system, we

rewrite eguation (2-13a) as follows:
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s (] == T (Y. (w], - E[[D () ]]) (2-13b)
w M i w 1 W

The termm le(w)|i - E[lDw(w)ll in equation (2-13) is
how Isw(w)li is estimated by the INTEL system with a=1l.
Therefore the SABER method is equivalent to estimating
ISw(w)] by a local average of the sets of IS;(w)l obtained
by the INTEL system with a=1 if the same windows are us;d
in both cases. In fact, in the implementation of the INTEL
system, some form of local averaging is done by applying 3
the windows that are overlapped with each other to the
input noisy speech data. 1In this context, then, the
SABER method can be viewed as a variation of a special

# case of the INTEL system shown in Figure 2.3. The
} evaluation results of the SABER method reported by Boll
are summarized in Section II.3.3. |

In a more recent stu&y [17), Boll reported that the
local averaging discussed above is not important in his

system.

IT1.2.6 Other Generalizations of Correlation

Subtraction Method

The INTEL system discussed in Section II.2.4 is in

a sense an arbitrary generalization of the correlation
subtraction methcd. An alternative arbitrary generalization
is to estimate !Sw(w)}z by iYw(w)?2 - k-E[!Dw(u){Z] for

some arbitrary constant k and based on this estimate of
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lSw(w)I, speech can be generated in the same manner
as in the correlation subtraction method. This system
was proposed (18] for possible speech enhancement and
studied in this research. The performance of this system
is summarized in Section II.3.4.

In a more recent study [19], Schwartz etal. considered
for speech enhancement the same system discussed above.
In their study, an additional feature is included in
that after the subtraction ls;(w)l2 obtained is compared
to a threshold level S-E[lDw(w)IZ] for a small arbitrary

constant 8 and if ISw(w)lz is smaller it is set to

B-E[IDw(w)IZ]. Thus in their system,

s % = |y, |? - k-E(]D, (w)|?]
for |y (w)lz > (k+8)-E[|D (N)IZ],
W \
B-E[lDw(w)Izl otherwise

Clearly, there exist a number of other arbitrary gener-
alizations. For example, we could estimate [Sw(w)ia by
le(w)la - k-E[IDw(w)Ia] for some arbitrary constants
a and k. Such a system includes both the INTEL system

(by setting k=1) and the system discussed in this section

(by setting a=2) as special cases.
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II.2.7 SPAC and SPOC

Suzuki developed [20] a speech enhancement system
called SPAC or "Splicing of Autocorrelation Function”.
SPOC or "Splicing of Cross-correlation Function” is a
revised version ([21] of SPAC. The two systems have been
used for compression or expansion of the spectrum, or
lengthening or shortening the duration of speech, or
reducing the noise level in the speech signal. 1In the
discussions in this section only the noise reduction
aspect is considered.

SPAC is based on the notion that the short.time
correlation of speech has common £frequency components
with the short time speech. Therefore, for voiced sounds
that are periodic with the fundamental freguency, the
short time correlation properly defined is also periodic
with the fundamental freguency. Furthermore, if one
replaces each pitch perioéd of speech with the corresponding
pitch period of the short time correlation, then the
freguency components of speech would be unchanged except
that the spectral magnitude at each frequency would be
approximately squared. Since the effect of the background
noise such as white noise generally degrades more the
points near the origin in the short time correlation
domain, speech may be enhanced by replacing each pitch
veriod of speech with one pitch period of the corresponding

short time correlation beginning some points away from the

- . e e . - . . . ’
ittt A i ) il e
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origin. Suzuki observed that SPAC causes some distortions

due to the sgquaring operation of the spectral magnitude
of speech caused by replacing speech with its short time
correlation. SPOC is a revision of SPAC to reduce
such distortions.

To ar reciate how this method compares to other
P methods in terms of its performance, we consider a very
“ simple example. Suppose the background noise is zero mean
and white Gaussian with the variance of cé and -further
assume that s(n) is periodic with the period of T such

that s(n+T) = s(n) for all n. Ve define the short time

correlation of speech ¢;(n) at ng by

n0+M-l

0% (n) & ) s(2) *s(2-n)

2=n0

for some fixed M and ¢;(n) and ¢§(n) are similarly defined.
Note that ¢;(n) is slightly different from @s(n) in that
the summation is over M number of points independent of n.
Three cases are considered. In the first case, ¢;(n)

is simply estimated as ¢;(n) and thus

$%(n) = s3(m) for 0 g ¢ T-1 (2-14)

In the second case, a;(n) is estimated by »*(n) - E[aé(n)}

*
)4

and therefore
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. 2
¢z(n) = ¢;(n) ~Mwg4+8(n) for 0 < n < T-1 (2-15)

This case corresponds to the correlation subtraction method.
The third case corresponds tc estimating ¢;(n) by SPAC

and therefore

¢*(n) = ¢;(n+T) for n =0

¢;(n) for 1 <n < 7T-1 (2-16)

Comparing equations (2-14), (2-15) and (2-16), ¢;(n)
estimated is the same for 1 < n < T-1 in all three cases.
Defining e(0) = ¢;(0) - ¢;(0), it can be easily shown

for case 1,

= Mool
E(e(0)] = M o3
n_+M-=1
: 0 2 2 4
Var(e(0)] = 4 « sT(R)rog + 2Mrog4 (2-17a)
i=n
0
for case 2,
E[e(0)] = 0
n.+M+1
0 2 2 4
Var{e(0)] =4 « ] s“(2)s05 + 2M-0, (2-17b)
2=nO
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and for case 3,

Efe(0)] = 0
n, +M-1
0 2 4
Varle(0)] = 2 - I s () 204 + Mrog + K
2=
0
n_ +M-1
0 2 2
in which k << 2 P s o
2=n . d
n. +M-1 i
0 2 2, .. 4
and therefore Var([e(0)] = 2 s (2) sog+Mea, (2-17¢c)
2=n

0

The above comparison shows that the correlation subtraction
method eliminates the bias but does not reduce the error
variance. SPAC eliminates the bias and reduces the error
variance by about 50%.

On the other hand, SPAC requires an estimation of the
fundamental frequency and speech is not strictly periodic
even for voiced sounds. Furthermore, SPAC can not be
applied to unvoiced sounds and even with thermvision made
by SPOC, there are some spectral degradations due to
replacing speech with the short time correlation type of

function. The performance of SPAC or SPOC is not known.

IT.2.8 Wiener Filtering Method

If y(n) = s(n) + d(n) in which s(n) and d(n) are
samples obtained from uncorrelated stationary random

processes and if y(n) is available for all time, it is
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well known ([22] that the optimum linear estimator that
minimizes E((s(n) - é(n))z] in which 8(n) represents
the estimate of s(n) is given by the non-causal Wiener

filter whose frequency response is given by

Ps(w)

Hw) = B_(w) * Py(w)

(2-18)

where Px(w) represents the power spectrum of x(n).
Callahan [23] approximates the non-causal Wiener
filter in terms of the average short time energy spectrum

and thus

E[Qs(m)]

H(w) "ETe_ @1 + El8 (w)]

(2-19)

in which @s(w) and Qd(w) are given by F[@S(n)] and F[¢d(n)].
E[¢d(m)] can be obtained either from the assumed known
Ttatistics of d(n) or by averaging many frames of @d(m)
during which noise can be assumed to be stationary.

E[¢s(w)] is estimated by subtracting E(?,(w)] from

d
locally averaged ¢y(w) over many consecutive windows.
Callahan notes that to estimate E[@v(@)] within an accept-
able variance, ¢y(w) should be averaged over at least 100
msec which is a relatively long interval during which
speech may not be assumed to be staticnary. If E[bs(u)]

estimated is necative, it is set to zero. The short time

Fourier transform Sw(u) is then estimated by multiplying
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Yw(m) with H(w) given in equation (2-19). Thus in this

system, lsw(w)! is estimated by [Yw(w)

*H{(w) where
H(w) is obtained from equation (2-19) and is;}w) is
assumed to be iYw(m). In the specific algorithm by
Callahan, only one point of s;}n) is obtained from the
estimated S;(w) and the window slides through y(n) by
one point at a time. The performance of this system
reported by Callahan is summarized in Section II.3.5.

It appears that there are a number of other ways to
obtain E[@y(w)] used in estimating H(w) in equation
(2=19). Instead of averaging Qy(m) over 100 msec, an
equally reasonable way appears to be to perform some kind
of smoothing on ¢y(w) and assume the smoothed Qy(m) to
be E[@y(w)]. Also, if we want to generalize the Wiener
filtering method arbitrarily as was done in the case of

the correlation subtraction method, there are, of course,

numerous possibilities.

I1.2.9 Summary

In this section, various speech enhancement systems
discussed in Section II.2 are briefly summarized. The
comb filtering method is an attempt to increase the S/U
ratio based on the periodicity of voiced sounds. SPAC
or SPOC is based on the notion that in the correlation

domain the effect of the background noise is typically

more pronounced near the origin while speech repeats itself

B TR A Ry e ywe < B <Y
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in each pitch period. 1In generating speech in SPAC or

SPOC, the notion that voiced sounds are periodic and the
spectral contents of one pegiod of speech is closely
related to one period of its correlation is exploited.
All other methods discussed in Section II.2 differ
primarily in how ¢_(n) or lsw(w)l is estimated and how

speech is generated based on ¢s(n) or [Sw(w)[. Their

differences are summarized in Table 2.1.

II.3 Summary of Performance Evaluation

IT.3.1 Adaptive Comb Filtering Method

Speech enhancement techniques related to comb filtering
have been evaluated more extensively relative to other
techniques. Using Frazier's system [ll], Perlmutter ([4]
processed some speech material that consist of nonsense
sentences and performed intelligibility tests with inter-
ference consisting of the speech of a competing talker.
Her results indicate that even with accurate fundamental
frequency information, the adaptive comb filtering method
decreases intelligibility at the S/N ratios where the
intelligibility of unprocessed nonsense sentences range
between 20 to 70%.

As a part of this research, Frazier's adaptive comb
filtering method with the improvement made by Lim [5] has
been evaluated by using nonsense sentences as test materials

when the interference is wide bané random noise. In Figure
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2.4 is shown the results of the intelligibility test as

a function of the S/N ratio and the length of the adaptive
comb filter. The results of the test show that even with
carefully hand edited pitch information, an adaptive comb
filtering method tends to decrease the speech intelligi-
bility at the S/N ratios where the intelligibility scores
of unprocessed nonsense sentences range between 20 and 70%.
Since in practice accurate pitch information is not
available and can not be expected to be obtained from
degraded speech, the intelligibility scores will be even
lower than shown in Figure 2.4.

The evaluation results of the systems by Parsons
is not available. However, an informal listening
indicates that the performance is similar to Frazier's

system when applied to a competing speaker environment.

II.3.2 Correlation Subtraction Method and INTEL
System

As we discussed in Section II.2, the INTEL system is
in a2 sense an arbitrary generalization of the correlation
subtraction method. More specifically, the case when a=2
in the INTEL system corresponds to the correlation subtrac-
tion method. 1In this research, the performance 0of the
INTEL system in Figure 2.3 has been evaluated (6] by
using nonsnese sentences as test materials when the

interZerence i1s wide band random noise. This study was
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motivated primarily by the subjective impression that
substantial noise reduction was achieved by the INTEL
system. In Figure 2.5 is shown the results of the
intelligibility test as a function of the S/N ratio and
the constant "a". The results of the test show that the
system does not increase the speech intelligibility at
the S/N ratios where the intelligibility scores of
unprocessed nonsense sentences range between 20 and 70%.
Based on our informal subjective judgement, however, the
processed speech by the INTEL system sounds "less noisy"
and of higher guality at relatively high S/N ratios. Thus
if the system is evaluated at higher S/N ratiés, in terms
of speech quality or as a pre-processor for a bandwidth
compression system, then the system may be found to be
useful. There is some indication that the above may be

true, as will be discussed in the next section.

IT.3.3 SABER Method

Boll reported ([17] the results of a very preliminary
evaluation of the SABER method, which corresponds to a=l
of the INTEL system. His results by the Diagnostic Rhyme
test indicate that at the S/N ratio at which the intelli-
gibility score of the unprocessed speech material is
about 84% the SABER method does not increase speech intell-
igibility which is consistent with our results of the

INTEL system with a=l. However, when speech quality is
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tested [17) or the SABER method is used as a pre~processor

of a bandwidth compression system, some improvement is

noted at the above S/N ratio.

i e —

II.3.4 Other Generalizations of Correlation

Subtraction Method

Even though an extensive intelligibility test has not
been performed to evaluate the system discussed in
section 11.2.6 (|s (w)|% = |v_(0)]? - x-ElID, (@) ]2]),
based on an informal listening test it appears that the
performance of this system is similar to the INTEL system,
with a higher value of k generally corresponding to a
smaller value of a. For a wide ranging S/N ratios (below
approximately 5 db), a value of k less than 2 appears to
be better. A large value of k at low S/¥ ratios has the
effect of essentially eliminating the unvoiced sounds
and higher formants of voiced sounds. Further details
on the performance of this system will be discussed later
in this thesis.

The system by Schwartz et al. which has an additional
parameter 8 is reported [19] to eliminate some perceptually
unpleasant speech degradation in the processing by a

proper choice of 3.

IT.3.5 Wiener Filtering Methed

Callahan applied the Wiener filtering method discussed
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in Section II.2.8 to reduce surface noise of a 1907
recording by Enrico Caruso and reported [23] that the
technique "greatly reduces" the surface noise. The per-
formance of the system when applied to enhance noisy

speech is not known.

II.4 Bandwidth Compression Systems of Noisy Speech

Our discussions in Sections II.2 and II.3 have
been primarily concerned with speech enhancement éystems.
However, most of the discussions apply equally well to
the bandwidth compression systems of noisy speech, since
the two are closely related to each other, as we discussed
in Chapter I. A successful speech enhancement system can
in general be used as a part of a bandwidth compression
system of noisy speech. This point is obvious for a class
of speech enhancement systems based on an analysis/synthesis
system. Alternatively, a successful speech enhancement
system can potentially be used as a pre-processor for a
bandwidth compression system of noise-free speech, in which
case we can represent an overall bandwidth compression
system of noisy speech as shown in Figure 2.6.

In some cases, the system in Figure 2.6 can be
simplified. For example, a speech enhancement system such
as the correlation subtraction methcd is directed towards
estimating fSw(s), more accurately. In a bandwidth compression

system such as an LPC vocoder [24,25], a homomorphic
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Figure 2.6 The analysis part of a bandwidth compression
system of noisy speech when a speech enhancement system

is used as a pre-processor
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} . Figure 2.7 A possible simplification of the system in

Figure 2.6 for scme cases. See the text for the details
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vocoder ([26] and a spectral root vocoder [27], ls;(u)|
can be directly used to obtain the speech synthesis para-
meters. Then the system in Figure 2.6 can be simplified
to Figure 2.7. The main advantage of the system in
Figure 2.7 relative to the system in Figure 2.6 is the
computational simplicity in that the speech generation
process from Is;(m)l in the speech enhancement system can
be avoided. A disadvantage is that an existing bandwidth
compression system of noise-free speech has to be modified.
From the above discussions, any speech enhancement
system discussed in Section II.2 may be used in one form
or another for the bandwidth compression of noisy speech.
Little data exist in the literature on the performance

evaluation of such a bandwidth compression system.

IT.5 Motivation for a New Appréach

In this chapter, we have summarized various speech
enhancement systems previously proposed. Even though the
list of the speech enhancement systems summarized in
Section II.2 is not complete, they illustrate the basic
philosophy behind currently a&ailable speech enhancement
systems and raise a number of important guestions. One
guestion is in the incorporation of more knowledge of speech.
As we have seen in Scction II.2, the speech enhancement

systems previously proposed are typically based on the per-

iodicity of voiced sounds, uncorrelation of sveech with
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the background noise or the importance of the short time
spectral information for the human speech perception.
A natural question is if other knowledge of speech can be
incorporated in developing speech enhancement systems.
Another question is in how we incorporate what we know
about speech. As we discussed in Chapter I, it is
desirable to incorporate our knowledge of speech in a
manner consistent with the goal of speech enhancement.
In the speech enhancement systems previously proposed, a
serious attempt has not been made to "optimally" incor-
porate what we know about speech. A third gquestion is on
developing a bandwidth compressicn system. In our discus-
sions of the bandwidth compression systems of noisy
speech in Section II.4, we have considered using the speech
enhancement systems as pre-processors. Such a system
typically requires generating enhanced speech and then
using the enhanced speech as input to a bandwidth compression
system of noise-free speech. A natural guestion that
arises is if we can estimate the speech synthesis parameters
directly from the noisy speech.

In this dissertation, we develop systems for enhancement
and bandwidth compression of noisy speech by attempting
to estimate the speech synthesis parameters directly from
the noisy speech based on a well known estimation procedure.
Such as approach leads to the incorporation of more knowledge

of speech in an "optimum" manner. In the next chapter, we

AT AR T T W 1 e

[T
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discuss the basic approach taken in this thesis for

enhancement and bandwidth compression of noisy speech.
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CHAPTER III MODEL OF SPEECH AND ITS PARAMETER

ESTIMATION

III.1 Introduction

Many successful speech processing systems rely at
least to some extent on a model of the speech as the
response of a guasi-stationary linear system to a pulse-
like excitation for voiced scunds or a noise-like excita-
tion for unvoiced sounds. To develop systems for enhance-
ment and bandwidth compression of noisy speech, it is
reasonable to capitalize on the underlying speech model,.
Thus in this chapter, we formulate the problem of speech
enhancement and bandwidth compression of noisy speech as a
parameter estimation problem of the speech model parameters.
In Section III.2, we present the model of speech which has
been studied in great detail [7,13] and has been used
extensively [7,13] in many practical applications. 1In
Section III.3, we represent the speech model discussed in
Section III.2 in several different forms which we'll £ind
useful in the later chapters. In Section III.4, we discuss
the model of noisy speech and its several different repre-
sentations. In Section III1.5, we review briefly the theory
of the general parameter estimation problem and three
standard estimation rules that have been s-udied extensively

in the literature. In Section III.6, we discuss the esti-

[

o}

mation ¢f the speech model parameters and its reslation

the problem of erhancement and bandwidth compression of
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noisy speech.

III.2 Model of Speech

A digital model of sampled speech that has been used
in a number of practical applications and has a basis
[7,13] in the human speech production system is shown
in Figure 3.1. In the model, the excitation source is
either a gquasi-periodic train of pulses for voiced sounds
or random noise for unvoiced scunds. The digital filter
represents the effects of the vocal tract, lip radiation,
and in addition the glottal source in the case of voiced
sounds. Since the vocal tract changes in shape as a function
of time, the digital filter in Figure 3.1 is in general
time varying. However, over a short interval of time,
we may approximate the digital £filter as a linear time

invariant system that can be represented as

H(z) = G(z2)+V(2) 'R(2) for voiced sounds

V(z)*R(2) for unvoiced sounds

where G(z), V(z) and R(z) represent the effects cf the
glottal source, the wvocal tract and the lip radiation,
respectively.

In ¢eneral H(z) consists of both poles and zerces.

However, for non-nasal voiced sounds, H(z) can be shown

(7] to ce reasonably well modelled by an all pole system.
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Furthermore, even for those cases such as nasal sounds or
unvoiced scunds in which H(z) can not adegquately be
modelled {7] as an all pole system, experience [7,13]
has shown that speech analysis based on an all pole
system H(z) leads to many useful results and speech synthe-
sized based on the all pole model is highly intelligible
and of higl quality. Since the analysis in general is
much simpler for an all pole system than a more general
system that includes zeroes as well as poles, H(z) will
be modelled as an all pole system. Thus in this thesis,
speech is modelled on the short time basis as the response
of a stationary all pole svstem to a pulse-like excitation
for voiced sounds or a noise-like excitation for unvoiced

sounds.

ITI.3 Representations of the Model of Speech

The model of speech discussed in Section III.2 can
be represented in many different forms. In this
section, we discuss Zour different representations of
the speech model.

In the speech model discussed in Section III.Z2,
the transfer Zfunction H(z) is modelled to be all-pole

0Z the form
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Thus, on a short time basis the speech waveform s(n)

assumed to satisfy a difference equation of the form

s(n) = § a, *s(n-k) + u(n)
k=1

where u(n) is a pulse train or rardom noise. Notationally,

it is convenient to represent equation (3-2) in a ma
form as

s(n) = gTog(n-l,n—p) + u(n)

. 1
and a is the parameter vector

| 21

™

and §(nl,n2) denotes the vector of speech samples
’s(nl)‘

i(nlrnz) =

sznz)

1 . . \ ,
A summary ¢f various notations usecd throughout the
is in Appendix 1.

is

(3-2)

trix

s g XA AT | R A A g T

(3-3)

(3-4)

thesis 4

]
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The vector of observations is assumed to consist of XN

values s(N-1), s(N=2), ..., s(0), i.e., s(N=1,0),

which will be denoted by 55° Equation (3-3) for

0 <n < WN-1 is one representation of the speech model.
Equation (3-3) can be represented in various

different forms. One form comes from rewriting equation

(3-3) as

s(N-1,0) = A.s(N-1,0) + A s, * u(N-1,0) (3-6a)

where A is an NxN matrix given by

"0 a, a ... a, 0, 0, 0 7
1 2 P
.
0 0 a a ~
1 2 ..
~ ~ Sw
~ S S
0 «.\ \\ \\\ O (3"6b)
S .
0 ~ - a
A = . o e P
\\ \‘\ .
\\ - ~
~ A S
\\ \\
~\\ \\\ \\\
.
\~‘ \\\\ a2
‘\
.
0] N ‘a
—_— ‘\\ l
\\
.
i
.
0]

and Ac is an Nxp matrix given by

e = i enta i et ORI el - PO = P _ v o

TR S P = AW R

R o

A —— T =
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-0 —1
9
a
A, = P (3-6¢)
I a_
p-1™
Lalp v e o . ,ap_l,lap-

and St is a pxl matrix given by
S(_l)\
s(=2})
s; = s(-1,-p) = ’ (3-64)
3(-p)
Therefore,
-1 -1
s(N-1,0) = (I-A) ~ AI'EI + (I-A) "u(N-1,0) (3-6e)

Equation (3-6) is another representation of the speech
model.
Two other forms can be derived by represernting eguaticn

(3-3) in a state space form as shown in the following




equation:

where

and

Equation
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x(n) = F(n)+x(n=1) + G(n)ru(n)

z(n) = H(n)+*x(n) + v(n) for 0<n<N-1 (3-7)
x(n) is a state vector,

z(n) is an observation vector,

u(n) is an excitation vector,

v(n) is an observation noise vector,

x(-1l) is an initial condition vector.

(3-3) can be represented in the form of egquation

(3-7) by using a as a state vector and thus

[
3
1]

a(n-1)

sT(n-1,n-p)+a(n) + u(n) for 0<n<N-1 (3-8)

n
o]
1]

Alternatively, s(n,n-p+l) can be used as a state

vector x(n) and thus

x(n) F+x(n-1) + G-u(n)

s(n) H*x(n) for 0<n<N-1 (3-9a)
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fxl(n)‘ (s(n) ‘
xz(n) s(n-1)
where x(n) = : = : (3-9b)
xp(n)l ls(n-p+l)
- -
Bir Bprererennnaneaiaaa, ,ap
1,0, 0, 0, ceeeiee.. , 0
o, 1, 0, 0, cceveeees .0
Fo= 0,0, 1, 0, 0,ceuun. ,0 (3-9¢)

0 0, 1, 0,
0
L 1]
! 1
o |
G = 0 (3-98)
0
and H= [1,0,0,..... , 0] (3-9e)
In the above, we have seen that the speech model can
be represented in at least four different forms, namely

egquations (3-3), (3-6), (3-8) and (3~9). These different

representations will be found to be useful at various pecints




Ve

-74-

in our later discussions.

III.4 Model of Noisy Speech and its Representations
When the background noise is added to speech, the

noisy speech can be represented as
y(n) = s(n) + d(n) (3-10a)

where y(n) represents noilsy speech and d(n) represents
the background noise or disturbance. The observation

vector y(N-1,0) which will alternatively be denoted as
Yor then, consists of the sum of speech and background

noise, i.e.,
y(N-1,0) = s(N-1,0) + d(N-1,0) (3-10b)
Combining equations (3-3) and (3-10),

y(n) = g?-x(n-l,n—p) - gT'g(n-l,n-p) + u(n)

for 0 < n < N-1 (3-11)

Like equation (3-3), egquation (3-11l) can alternatively
be represented in various different forms. Two convenient
representations which parallel equations (3-6e) and (3-9a)

are

-1

y(N-1,0)=(1-a) .2 1

p'Sp+(I-A) 77 u(N-1,0)+d (N-1,0) (3-12)

[P NV

e T
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where A, AI and S; are given by equation (3-6) and

x(n) F.x(n=1l) + G-u(n)

y(n) Hex(n) + d(n) for 0 < n < N-1 (3-13)
where x(n), F, G and H are given by equation (3-9).
Equation (3-11), (3-12) or (3-13) represents the model

of noisy speech and will be found to be useful in the

later disucssions.

III.5 Review of Parameter Estimation Theory

In this section, we review very briefly the general
parameter estimation theory. Let A and R denote the
parameter space and the observation épace; and suppose
that there is a probabilisitc mapping between the para-
meter space and the observation space. Assume that a
point o in the parameter space was mapped to a point r

in the observation space. The parameter estimation problem

is to estimate the value of & after observing r by some
estimation rule.

Three different estimation rules known as Maximum
Likelihood (ML), Maximum A Posteriori (MAP) and Minimum
Mean Square Error (MMSE) estimation have many desirable
properties and thus have been studied [22,28] extensively
in the literature. For non-random parameters, the ML

estimation rule is often used. In the ML estimation, the
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parameter value is chosen such that the chosen value most like-
ly resulted in the observation r. Thus, the value of a is
chosen such that pR,A(rIa), the probability density function
of R conditioned on A, is maximized at the observed r and the
chosen value of a. The MAP and MMSE estimation rules are
commonly used for the parameters that can be considered as
random variables whose a priori density function is known.

In the MAP estimation rule, the parameter value is chosen

such that the a posteriori density pAlR(alr) is maximized at
the observed r and the chosen value of a. Even though the MAP
estimation rule is based on a random parameter assumption and
the ML estimation rule is baseé¢ on a non-random parameter as-
sumption, the two estimation rules lead to identical estimates
of the parameter value when the a priori density of the para-
meter in the MAP estimation rule is assumed to be flat over
the parameter space. For this reason, the ML estimation rule
is often viewed as a special case of the MAP estimation rule.
In the MMSE estimation rule &(R), the estimate cof a1, is ob-
tained by minimizing the mean sguare error E[(&(R)-a)z]. The
MMSE estimate of a is given by Ela|r], the a posteriori mean
of a given r. Therefore, when the maximum of the a posteriori

density function (2]r) coincides with its mean, the MAP

Palr
estimation and MMSE estimation rules lead to identical esti-
mates.

The three estimation prccedures briefly discussed

above have been applied {22,28] to a number of practical
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parameter estimation problems. Detailed discussions on

their properties, relations and application areas can

be found in [22,28].

IIT.6 Estimation of Speech Model Parameters
The model of speech discussed in Section III.2 is
;ompletely specified if we determine the parameters related
to the excitation u(n) and the system parameters a in
H(z) of equatiocn (3-1l). The basic problem that has been
considered in this dissertation is the estimation of
the all pole coefficients ay -
Ideally, the all pole coefficients should be
estimated based on a rule consistent with the subjective
aspects of speech. Since a function of a that relates
the degree of speech degradation in the subjective domain
is not well understood, developing such an estimation rule
is difficult. However, we may attempt to use other well
kiiown estimation rules discussed in Section III.5 which
are optimum in a different sense but which have been
successfully applied to a number of other practical
problems. In this dissertation, we take the approach to
use the MAP estimation procedure. The parameter to be
estimated is a and the observation is the noisy speech.
The MAP estimation procedure is based on the philo-
sophy to maximize p(gizo) where a and Yo reoresent the

all zole ceocefficient vector and the noisy speech vector.

L
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The approach to use the MAP estimation procedure to estimate
the all pole coefficients has a number of advantages.

First, the procedure and properties of the MAP estimation
are well established [22] and can be applied to speech
processing. Second, the Maximum Likelihood (ML)

éstimation procedure can bhe viewed as a special case of

the MAP estimation procedure since the two estimates are
the same when the a priori density of a is assumed to be
flat. One property of the ML estimation which is useful

for speech processing is that if f£(a) has a one to one

N ~

. c -
correspondence with a, then Eyp, (2) f(gML) where a,.
represents the ML estimate of a. Therefore, if the percep-
tually important parameters have a one to one correspondence
with a, then the ML estimates for such perceptually impor-

tant parameters are automatically obtained by obtaining

A

EML’ Further, as will be discussed in greater detail in
Chapter IV, for noise-free speech a under appropriate i

=S

~

assumptions are equivalent to the a obtained by the covar-
iance [7,29] or correlation [7,29] method both of which
have been successfully applied to the Linear Predictive
Coding of speech. Third, the MAP estimation procedure
provides a theoretical framework in which some a priori
information about a can be incorporatad. Due to the
temporal and sgectral characteristics o speech, scme a '

priori information of the all pola coeificients a when H

properly incorporated may in fact aid in estimating a.
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R ——

In estimating a by the MAP estimation procedure, the

excitation u(n) is assumed Lc *2 zero-mean white Gaussian

m——

noise. In the context of the speech model discussed in

Section IITI.2, this assumption is wvalid only £for unvoiced

speech since the excitation is assumed to be random noise.

There are several reasons behind this particular choice of
the excitation. First, the analysis of the MAP estimation
“ procedure is relatively simple in the case of the random
noise excitation if the excitation is assumed to ke
generated by a white Gaussian process. The case when the
excitation is a pulse train is considerably more difficult.
Second, as will be discussed in Chapter IV, in the absence
of background noise with the excitation treated random
one set of the MAP estimation procedures corresponds

exactly to the linear prediction analysis which is well

known to be successful for beth voiced and unvoiced A

speech. Further, as will be discussed in Chapters VII
and VIII, the theoretical results developed in the thesis
for the system parameter estimation in the mresence of
background noise when the excitation is random noise can
be applied with similar performance to the case of the

pulse train excitation,

.. If the all pole coefficients can ke "better" estimated

through the MAP estimation trocedure bv accounting for the

e apynero

3
ct

1 fact have a better bandwicdth :

(2

presence of noise, then we

compression system of noisy speech in the context of an LPC
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vocoder. Even though a complete vocoding system requires
the estimation of the source parameters as well as the
system parameters, the problem of estimating the source

parameters accounting for the presence of background

P e Tt T e i o VAR TERA - 7 SRRV,

noise will not be treated in this thesis. For the

enhancement of noisy speech, there are two ways that

the estimation of a can lead to speech enhancement. If

we in fact have a successful bandwidth compression

system, then the bandwidth compression system itself can

be used as a speech enhancer. Alternatively, in the
systems that we develop for the estimation of the all

pole coefficients, the speech s(n) is estimated in the
process of estimating the all pole coefficients. Thus if
speech enhancement is desired, then the estimated ;(n)

can be used as the enhanced speech. The fact that s(n)

is also estimated is important not cnly in the context of
speech enhancement, but in the context of bandwidth compres-
sion of noisy speech. 1IZ we estimate only the all pole
coefficients, then we are limited to a class of vocoding
systems known as LPC vocoders. Since speech is estimated
as well as the all pole coefficients, the systems developed
can also be sued as pre-crocessors for any vocoding systemn.
Therz2fore, the systems developed in this thesis are
potentially applicable for both bandwidth compresssion
through a varisty oI vocoding systems and sgeech enhance-

ment of noisy speech.
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CHAPTER IV STATISTICAL PARAMETER ESTIMATION [ROM
NOISE-FEEE SPEECH
IV.1 Introduction
In this chapter, we review and relate various ways

of estimating the speech model parameters from the noise-
free speech. 1In Section IV.2, the problem of parameter
estimation from the noise-free speech is formulated. 1In
Sections IV.3 and IV.4 are discussed two different approaches
for the same parameter estimation ovroblem formulated

in Section IV.2.

IV.2 Problem Formulation

Speech is modelled as the response ¢of a linear
guasi-stationary system to a noise-like excitation.
From equation (3-3) with u(n) corresponding to white

Gaussian noise,
T, .
s(n) = a *s{n-l,n-p) + grwin) (4-1)

where w(n) is white Gaussian noise with zero mean and

unit variance (i.e., E{w(n)] = 0 and E(w(a) w{m)! = 3(n-m)).
Equation (4-1) implies that s(n) depends on a total

0Z 2o+l rarameters, svecifically the p values in tie

ccefiicient vactor 2, the initial conditions s_. = s{-i,-2)

- = ’
4L

and the gain factor ¢. We assume that these unknown gara-

met2rs are randem with asscciated a priori Gaussian prokabil-
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ity densities. The basic problem treated in this thesis

is to estimate the system parameters a, from the cbserva-

k

tion vector $o by the MAP estimation procedure. Thus

the system parameters a are chosen to maximize p(a ),

5o
the probability density function2 of a conditioned on So-
There are several approaches that can be taken in maximiz-

ing p(g|§o). In Sections IV.3 and IV.4, we consider two

different approaches.

IV.3 Direct Approach: Maximization of p(§[§o)
p(glgo) can be written as
! - ‘ ] -
plalsy) = [ [ pla,g.s isy) dg ds. (4-2)
over g
and S
From Bayes' rule, p(é,g,gIlgo) is given by:
D(s [a/g;s ) O(argrs )
Pi3pl2s8.57) PlasS 5
! = -
2(a,9,8.18,) B(sy) (4-3)
The conditional density function p(§0§§,g,§ ) can be

I
evaluated by noting that

2 . . .
For a more accurate representation, a crobability density
Zunction px(-) and the density function evaluatzad at X=X,

nould be distinguished. For the notational convenience,

3
p(xo) will be used in both cases and .ae distinction will

be left %o the context in which it is used.

ki

RS
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P(syiasg,sy) = p(s(N-1,0)12a,g,s(-1,-p))
N-1
= p(s(n){a,g,s(n-1,-p))
n=0
y-1
= 1 p(s(n)la,g,s(n-1,n-p)) (4-4)
n=s

From the model of egquation (4-1) and the assumption that

w({n) is white Guassian noise with unit variance,

From equations (4-4) and (4-3),

-1
1 - )

p(s:lg,g,sl)= 1j—w/5cxpﬁ- = ) (s(n)—gT-g(n—l,n-p))'](4—6)

’rg)‘ - =

p(i,g,gl) in equation (4~-3) represents the a priori knowl-
edge of the three unknown parameters. For a general Caussian

density of p(a,g,s.), it can be shown3 that maximizing

I

3 . . . . .
Consider a special case in which g is known,

§O=[s(0)]
and p=l. For a Gaussian density of P(i'il)' p(é{go) is
in the form of .
kl _—T_L_-f7§ e kz(al KB) +Z(a,)
(a'+k4) -
whers kl, k:’ k3 and k4 are cons*tants. Maxindizing
p(alis(O)) in the above highly simplified case involves

solwving a non-linear equation.
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&

a(iQEO) given by egquations (4=-2),(4=3), (4-4) and (4-6)
in general requires sclving a set of non-linear equations.
The problem can be made linear, however, by making

some specific assumptions of 9(3'9'51) and/or including

as the parameters for estimation the auxilliary parameters

such as g and s, which are unwanted in the sense that our

I

primary interest is in estimating a. In the remainder of
) . - 4 .
this section, four such cases are examined. In case 1,

all of the parameters a, 3 and s_. are jointly estimated

I
assuming no a priori information of the parameters. The
estimate for a that results corresponds exactly to the
covariance method of the linear prediction aralysis.

In case 2, S is assumed to be known and a and g are estima-

ted jeintly assuming no a priori informaticon of a and g.

Depending on specifically how s. is assumed known, this

I
correspends to estimating a using either the covariance

method or correlation methed of the linear

"y

radiction

analysis. 1In case 3, g is assumed to be known and a
and Sp are jointly estimated assuming no a priori infor-
mation of S In case 4, only a is estimated assuming g

and EI are known.
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These are the only four cases in which the scluticen can
be obtained by solving a set of linear eguations.
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to a, g and St with the assumption that no a priori
information of a, g or Sr is available. This corresponds
to the case when p(g,g,il) is constants. From equation

(4-3), since p(§0) is not a function of a, g, or S: and
p(g,g,gI) is assumed to be constant, maximizing
P(i'g'illio) is equivalent to maximizing p(goli,g,gl).
Thus, the MAP estimation of a, g and S in the absence of
a priori information reduces to the ML estimation of
those parameters.

From equation (4-6), maximizing p(golg,g,gl) with
respect to ¢ leads to

-1
Z (s(n) = aT-_s_(n-l,n--p))2 (4=7)

Maximization of p(golg,g,iI) with respect to a and s;

is equivalent to minimizing < given by

Iy

b4

e~ 1

1 T

L (s(n) - al.s(n-1,n-p))° (4-8)

e _ = .
P ;f n=0

1 to satisfy the set
5, . . .

As the variance becomes larger, the density function becomes
wider and flatter approaching a constant. More formally,
however, it should ke assumed that p(g,g,gI) is Gaussian

whose covariance approaches an arbitrarily large value.

In all the cases in this thesis where we assume that no

a priori information of some parameters can be modelled by
2 uniform density cf the parameters, it can be shown that
:he same theoretical results are obtained by first solving
the case of finite variance and then letting the variance
approach =,
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of eguations

J¢e

533 =0 for i=1,2,....,p (4-9a)
i

aap

m-f 0 for j=1,2,....,p (4-9b)

Rewriting equation (4-8) as

p-1
€, = 35 ) (s(n) - §?~§(n—l,n-p))2
< g n=0
N-1
+ 3? ) (s(n) - gT-g(n-l,n-p))z, (4-10)
g n=p

only the first of these summations involves the initial
condition vector S;- It is straightforward to show
algebraically that for any non-zero solution of the
parameter vector a, S

summation in equation (4-10) is zero. Since these are the

can be chosen so that the first

values which minimize ep with respect to s they would

=T’
then correspond to the estimate of these parameters. Since
we are only interested in explicitly estimating the coeffi-
cient vector a, it is not necessary to solve for Sr-
Since the first term in equation (4-10) will always be
zero when Ep is minimized, the minimization of egquation

(4-10) corresponds to minimizing with respect to a, the

function

L1 (st - aTesa~l,n-p)? (4-11)
g -
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Setting the partial derivatives of equation (4-11)
with respect to each of the coefficients a, te zero
results in a set of linear egquations given by

I (s(n) - al+s(n-1,n-p))+s(n-i)=0, i=1,...,p (4-12)

Eguation (4-12) corresponds exactly to the equations
obtained by the covariance method of the linear prediction

analysis [7,24].

Iv.3.2 Case 2
In this case, we assume that the initial condition

vector s. is known and no a priori knowledge of a and g

I

is available. Then p(i,g{§o) is maximized with respect

to a and g. From Bayes' rule,

te]

! ')

§O) = (4-13)

pla,g 5

(5(1)

and since s_ is assumed to be known p(§ofg,g) represents

I

pls,la,g,s;) evaluated at s. equal to its assumed known

value. Assuming p(a,g) is constant, maximizing p(é,g}go)

is equivalent to maximizing p(gofg,g) corresponding again
g.

to the ML estimaticn of a and From equation (4-6) with

Xnown $ maximizaticon of (s

o(s.'a,g) with respect to ¢ leads
552 T C

I ’
. 2 L. . oy
to ecguation (4-7) for g~. Maximization with respect to a

is identical fo minimizing :, given by eguation (4-8).

&
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However, the minimization is now carried out with respect
to a alone. Comparing equations (4-10) and (4-11), we
see that the function to be minimized with respect to a
is similar in both cases, differing only in the lower
limit of the summation. The linear set of equations for
a is now given by

N-1

) (s(n) - gT'g(n-l,n—p))~s(n-i) = 0

n=0

i=1,2,...,p (4-14)

If the initial conditions are indeedé known, then we
in fact have available N+v observations ¢of s(n). From
the N+p observations, we use the first p observations to

form the initial condition vector s. and the remaining N

I
observations to form the observation vector s.. If we

_O
consider the relationship between case 1 and case 2 on
the basis of the same total number of observations, then
in fact they lead to identical functions to be minimized
and consequently identical estimates.

In the above case, we have assumed that p(a,g) is

constant and s. is exactly known. Therefore, maximization

1
of p(a,gl!s.) was identical to maximizing p(s.la,qg).
p= =0 S0 ' ~=
Because maximization of p(go{g,g) with respect to a and

g in this case corresponds to the ML estimation for a and
g given (conditioned on) the initial condition vector

s$; < s{-1,-p), it is sometimes referred to as the
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Conditional Maximum Likelihood (CML) estimate of a.

As an alternative to using the first p observations
in each analysis frame to form the initial condition vector,
we can assume that the response was zero prior to the
observation interval. In this case, assuming that we have
a total of N actual observations, we augment these with
p additional zero values. Now, if we further extend the
data by p points and augment s(N+p-1,N) with zerces, then

maximization of p(g,g|§(N+p-l,0)) with respect to a and

g leads to
N+p-1 T
§ (s(n)-a"+s(n-1,n-p))+s(n-i) = 0
n=0
for i=1,2,....,pP (4-15)

and s(N+p-1,N) and s(-1,-p) are all 0. This is exactly

the same equations given by the correlation method of the
linear prediction analysis. In the context of the linear
prediction analysis, the principal advantage of the correla-
tion method over the covariance method has been that in

that case, the solution of the set of egquations involves

the inversion of a Toeplitz matrix for which there are
particularly efficient methods [30]. 1In addition, the
resulting all-pole model is guaranteed to be stable. From

ecuations (4-12) and (4-15) the resulting linear eguations

to be solved in both methods are given by

T e ———— T

mpev—

A= o e 7 B

g
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I(s(n) - a*-s(n-1,n-p)) *s (n-1i)
n

and the summation extends from p to N-1 for the covariance

method and from 0 to N+p-l1 for the correlation method.

Iv.3.3 Case 3

Now we consider the case when g is known so that

pla,s §O) is maximized with respect to a and s_ and

I
is available so that

1!

no a priori information of St

p(gI) is constant. Assuming p(g,EI) = p(g)-p(il), from

Bayes' rule

(4-17)

where p(§olg,§I) represents p(golgrgrgl) evaluated at g

equal to its assumed known value. Since P(EI) is assumed
constant, maximizing p(a,§I|§O) is eguivalent to maximizing

o ( (a). Assuming that a has a Gaussian density

o]

%!EliI) .

with mean a and covariance function Pyr p(a) is of the

form

= 1 . Loa-n T
p(a) = (27)9/2 e |1/2 exp[-5(a-a) P
' "0

-1,

o

| v
|

1)

Combining equations (4-6), (4-17) and (4-18), it can be

seen that maximizing equation (4-17) is eguivalent to
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minimizing sp given by

N-1
e = —L- Z (s(n) - aTts(n_l,n_p))Z + (a_;)T-P—l.(a—-a-)
P gz n=0 - = = = 0 ==

ep in equation (4-19) is similar to Ep in equation (4-8)

T, -1
%o

, minimizatiocon

or (4-10) but with the additional term (a-2a) ‘- (a-a) .

Since this extra term is not a function of EI

of Ep in equation (4-19) with respect to s. requires that

I

EI be such that

p
I (s(m) - g?'i(n-l,n-p))z =0

n=0

Therefore minimization of Ep in equation (4-19) with

repsect to a reduces to minimization of ap given by

1 2

—17 I° (s(n) - al-s(n-1l,n-p))° + (5—§)T-pal-(g—§) (4-20)
g n=p
Partial differentiation with respect to a; for i=1,2,....,p

results in a set of linear egquations.
If no a priori information on a is assumed so that
Py = cé-l with cg arbitrarily large, the & obtained in

this case would be 1identical to & in case 1.

IVv.3.4 Case 4

Now we maximize p(giéo) with respect to a assuming

Ty O

T A
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that g and S; are known. From Bayes' rule,

p(syla) p(a)

and since g and s, are assumed known p(§0|§) represents

I

P(syla,g,s;) evaluated at g and s_ equal to their

I

respective assumed known values. Therefore maximizing

p(gi§o) is equivalent to maximizing p(§O|3)°p(§).

Assuming p(a) is of the form given by egquation (4-18),

maximizing p(glgo) in equation (4-21) is the same as

minimizing the same ep in equation (4-19), which can

be easily seen by comparing equations (4-17) and (4-21).

Here, however, we minimize ep with respect to a alone,

which again corresponds to solving a set of linear equations.

The difference between equations (4-192) and (4-20) is

in the limit of the summation, analogous to the difference

between equations (4-10) and (4-11). If we assume no a

priori information of a, then the second term in eguation

(4-20) would be eliminated and the estimate for a obtained

in this case would be identical to thét obtained in case 2.
If we assume that s. = 0 and further extend the

I
data by p points with 0 (i.e., s(N+p-1,N) = Q) as we did

-

in case 2, then the equation to be minimized is given by

1 eel T 2 -7 -1 -

s == - (s(n) - a *s(n-1,n-p)) " + (a-a) +P,"*(a-a)
3 g2 n=0 - - 0 -

(4=-22)
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with S; and s (N+p-1,0) both equal to 0. In the limiting
case, as P, approaches =+.I, corresponding to no a priori

0

information of a, the minimization of €5 in equation (4-22)

reduces to equation (4-15) which corresponds to the
correlation method of the linear prediction analysis.
In the above discussion, we saw that maximizing .
p(g}go) leads to a set of linear equations only when g
and s_ are known. In practice these param2ters may not
be known exactly. However we might expect to make some

reasonable guess of g and s Alternativelyv, we can solve

I
the linear equations in case 1, assume that these

estimates of g and s_ are exact and maximize eguation

I

(4-21) with respect to a. A third possibility for obtain-
ing S: is to use the first p data points as S and use
the remaining N=-p points as Y which leads to the same

estimate of a as in case 3.

)

In this section, we have seen that maximizing p(a!

s
- =0
in general is a non-linear problem. However the rroblem
can be linearized if we make some specific assumptions about
the a pricri density of the parameters and/or include as

parameters for estimation some auxilliary parameters such

as g and s As will be discussed in Chapter V, the notion

I

of including as parameters for estimation some auxilliarv

. rarameters and making socme scecific assumpticns of the a v*
priori information on the rarameters will again l2ad to two

N

linear implementations when we deal with the statistical

L]
e —ershonsn t-—u-ﬁ.-h-ﬂﬁ-.-h-.ﬂ-ﬁl-----'--.-.---..-Eiiiiiiiiiiiiill‘
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parameter estimation from noisy speech. In Section

IV.4, we investigate an alternative way to solve the same

parameter estimation problem discussed in Section IV.3.

IV.4 State Space Approach: All Pole Coefficients as
State Vectors

In Section IV.3, g and s. were assumed to be known

, I
and estimating a by maximizing p(a

AR

i EO
set of linear equations. By representing the model of

) led to solving a

speech in a state space form, the same solution can be
obtained in a recursive manner by a Kalman filter. In
Section IV.4.1, the properties of a Kalman filter
relevant to our discussions in this thesis are briefly
summarized. In Section IV.4.2, based on the properties
of a Kalman filter discussed in Section IV.4.l, it is
disscussed that a Kalman filter applied to the preoper

model of speech maximizes p(ifgo).

IV.4.1 KXKalman Filter: Review

Suppose a system can be represented by a state
equation ¢f the following:
F{n)+x(n=1) + Gn)-un)

z(n) = H{nl-x(n) + 7(a) tor 0 < n < N-1 (+-233

where x(n) i1s a state vector,

N
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z(n) is an observation vector,

u(n) is a vector of zero mean white Gaussian noise
with a given covariance functicn,

v(n) is a vector of zero mean white Gaussian noise

with a given covariance function uncorrelated with

and x(-1) is the initial condition vector which Iis
Gaussian with a given mean and covariance.

If F(n), G(n) and H(n) are known, then Z[x(n) z{n,,0)]

which is the optimum under the MMSE criterion can be obtained

by a linear solution xnown as the "Kalman filter".

Depending on whether n is greater than, egual to, cr

less than n the solution is known as a precictor,

ll

filter or smoocther, respectivelv. For GCaussian xi(n)

28

which is the case in equation (4-23), the MMSE estimator
is equivalent to the MAP estimator since zix(n) z(n,,0))

is svmmetric abou<t the cenditicnal expectation Efx(n) z(n.,0)1.

In

-,
a xaLman

The detailed linear sclutions ¢
orocerties can he found in ([(22,31,32,33,34].

IV.4.2 Maximization of pl(a ) ov a Xalman Filter

s
20
Eguation (3-8) of the speech mocdel with un)=g-wi(n)

1s given by -

M-l (4-24

o) Sor O

n
pos )
1}
[}
8]
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-
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}
o]
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Equation (4-24) is a special case of equation (4-23). 1If

g and s, are assumed known, then F(n), G(n) and H(n) are

I
completely specified. Therefore, E(a|s(N-1,0)] which
corresponds to both the MMSE and MAP estimates of a can
be obtained by a Kalman filter. The filtering form (31,
32] of a Kalman filter applied to equation(4-24) is given

by aniterative solution;
4(n+l) = &(n) + k(n+1)+(s(n+l) - ST (n,n+l-p)-4(n)) (4-25)

where 4(n) represents E[a(n)|s(n,0)] and k(n+l) is the
Kalman filter gain which is a function of the covariance
matrix of a(n). The covariance matrix of al{n) can also
be updated and the initial starting values 4(-1l) and the
covariance of a(-1l) are, of course, the a priori mean and
covariance of a. For each n, a(n) obtained in this

manner is identical to a estimated by minimizing the

function
1 B T 2 - T -1 -
=5+l (sm -a-sm1,mp))° + (a-2) +P," (a-2)
g m=0

In particular, é(N-l) is the estimate of a obtained by
minimizing equation (4-19) with respect to a. The filtering

form of the Kalman filter solution discussed above is also

known as a recursive least sguares procedure and the primary




advantage of a recursive solution is that the data can

be sequentially processed as they appear.

~97-
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CHAPTER V STATISTICAL PARAMETER ESTIMATION FROM

NOISY SPEECH

V.1l Introduction
In chapter IV, a framework was established for the

MAP parameter estimation of the noise-free speech. In

ST TN T AR TR T T -

two of its forms, leading to equations (4-12) and (4-15),
there has been extensive experience in the context of
i,‘ ’ the linear prediction speech analysis with considerable
success and are currently the basis for many speech
processing systems [(7,8,12,14,24,25,29]. It is well
known, however, that these procedures degrade quickly in
the presence of additive background noise [2,3]. Conse-
quently, it is of interest to consider whether the same
basic approach and philosophy can be applied when the
observations are recognized to be corrupted by the back-
ground noise. Thus, in this chapter, we consider the
statistical parameter estimation from the noisy speech
based on the MAP estimation procedure.

] _ : In our discussions in this chapter, we first consider
the case of the whité Gaussian background noise and then
extend the theoretical results obtained to a more general
case when the background noise is colored. 1In Section

]
s i, . V.2, the MAP estimation procedure that maximizes the
]

probability density function of the parameters to be
estimated conditioned on the noisy speech vector will

be shown to be a non-linear problem. 1In Section V.3, we

r . v . .. - < e . e LR 4 . -
A e e—————————— ‘*1l'lll-"""".:2
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develop a linear iterative algorithm which approximates
the MAP estimation procedure. In Section V.4, we develop
another linear iterative algorithm by revising the method
discussed in Section V.3. In Section V.5, we extend the
theoc-etical results discussed in Sections V.2, V.3, and
V.4 to a more general case when the background noise is
colored. In Section V.6, we relate the two linear itera-

tive algorithms to the MAP estimation procedure.

V.2 MAP Estimation Procedure: A Non-linear Problem
Speech is again assumed to be generated by the model
of equation (4-1) and the coefficient vector a are the
basic parameters to be estimated. The observation vector
y(N-1,0) which will alternatively be denoted as Yq
consists of the sum of the speech and background noise,

i,e.,
y(N-1,0) = s(N-1,0) + 4(N-1,0)

where d(n) is zero mean white Gaussian background noise

with variance of cg and is assumed to be uncorrelated

with s(n).

Following a procedure similar to that of case 4
(Section IV.2.4), we can consider choosing the parameters
a to maximize p(glzo). In Chapter IV when we assumed that

g and 31 were known and p(a) was Gaussian, the resulting
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equations were linear. For the current situation, this

will no longer be the case. Specifically, from equations

(4-1) and (5-1),

y(n) = g?'i(n-l,n-p) + gew(n) + d(n) (5-2)
T T
or y(n) = a“*y(n-1,n-p) + g*w(n) + d{(n) - 2" +d(n-1,n-p)
},_ ' : (5-3)

Expressing p(zoli,g,iI) in a manner similar to equation

(4-4),
N-1
\
P(Xolirg'il) = I_[ p(y(n)l_a_,g,_S_I.z(n-l,O))
n=y :
p-1
* I—I p(y(n) ,_a_rgIE_IIX(n-llo))
=1
* py(0)]a,g,s;) (5-4)

From equation (5-2), for n > p, p(y(n)|a,g,s;,¥(n-1,0))

is Gaussian with mean of g?'E[g(n-l,n-p)lg,g,gl,x(n-l,O)]

and variance of g2 + cg + g?'Var[g(n-l,n-p)Ig,g,gl,z(n-l,0)1~g
where E[g(n-l,n-p)Ig,g,gl,x(n-l,O)] and Var{s(n-1l,n-p)
Ig,g,gx,z(n-l,O)] denote the mean and covariance of

s(n-1l,n-p) conditiocned on a,g,s, and y(n-1,0). Since the

I
v variance is a function of a, and will likewise be so for

the remaining terms, the resulting eguations for maximizing
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p(ilzo) will by necessity be non-linear.
Even though we have only shown that maximizing

p(glxo) which corresponds to case 4 in Chapter IV is
a non-linear problem, it is easy to see that maximizing
p(a,g,8;lvy) s plargly,y) or p(a,s;ly,) corresponding to
cases 1, 2 and 3 in the previous chapter is also a non-
linear problem. This is partly because each of the three
density furctions p(g,g,gllzo), p(a,glyy) or p(g,gllxo)
is a product of several terms, one of which is

N-1

1—[ p(y(n)lg,grgllx(n-l,O))-

n=p
It was shown above that p(y(n)lg,g,gl,z(n—l,O)) for

P < n < N-1 has the variance which is a function of a.

V.3 Maximization of P(i'iolxo)’ Linearized MAP (LMAP)
Estimation Procedure

To maximize p(aly,) which was shown to be a non-
linear problem in Section V.2, one approach is to determine
p(glxo) for any set of specific a and then use some form
of hill searching algorithm [35,36,37]. 1In general,
solving such a non-linear problem is computationally
undesirable. Thus, we are led to consider another method
which has a linear implementation, but which may not be
optimum in the sense that p(aly,) is not maximized. In

Chapter IV, we have seen that maximizing p(g!go) ig in

- [ R — , . . -
il
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general a non-linear problem. However, by incorporating
some auxilliary parameters as parameters for estimation
and/or making some specific assumptions on the a priori
knowledge of the parameters, the resulting equations can
be made linear. When the resulting equations (4-12 , 4-15,
4-20, 4-22) are used to estimate a and speech is syn-
thesized based on the estimated a, experience [7,8,24,25]
has shown that intelligible speech with high quality can
be generated. Motivated by the apparent success in the
case of noise-free speech, we take a similar approach in
the case of noisy speech. More specifically, we assume

that g and s. are known, and include the speech vector

I
S, @S an additional parameter to be estimated. Thus we
maximize p(g,golzo)s jointly with respect to a and sg.
In this section, we show that maximizing p(a,golxo) is
still a non-linear problem but can be implemented by a

linear iterative procedure.

V.3.1 An Algorithm to Maximize p(g,golzo)

Suppose we begin with an assumed set of initial

E; linear implementation for a can also be obtained

essentially in a parallel manner by maximizing p(g,go,g.

s;l¥y) s plarsy/glyy) or pla,syrs;ly,) with the appro-
priate a priori density assumptions of the unknown para-
meters. This situation is analogous to the four cases
considered in Chapter IV and allow us to estimate the
other parameters (g,s,) in the same manner as a if such

an approach is desired. 1In the discussions in this chapter,
we concentrate primarily on maximizing p(g,goixo).
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values &, for the coefficient vector a and based oa this,

0
estimate So by maximizing p(s I-O XO) Denoting this
first estimate of 55 by 8y, we then form a first estimate

gl of a. This procedure can then be continued iteratively

A

to obtain the final estimate 4 of the coefficients. We

)

now show that this procedure for estimating a (and I
always increases p(g,golzo) at each iteration unless
a converging solution is obtained. Specifically, since

4; is obtained by maximizing p(al_Ol

P& 1805 /o) P (Bog |2o)2 P (3 180; 110)

. p(éoilxo) (5=5a)

and therefore

P8;/85; 1) 2 P(&; 1/5; 11y (5-5b)

The equality sign in equation (5-5b) holds only if al=£l 1

since p(élgo,xo) is Gaussian in a. Since is obtained by

i

6(0 >

maximizing p(s, |& 8, 1/

p(§0i|§i_l,x0>-p<§i_llzo) 2 p(8y;-q 18, 0¥y) P& _ 1‘Xo’
(5-6a)

and therefore
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The equality sign in equation (5-6b) holds only if

8,; = 85i-1 since -(§oli’z0) is Gaussian in s,. From
equations (5-5b) and (5-6b),
P(&;/8,; 12y 2p(8; 1.8, 1y (5-7)

in which the equality sign holds if éi = éi-l and

So0i = Soi-1°

procedure discussed above always increases p(g,golzo) at

Equation (5-7) shows that the iterative

each iteration unless a converging solution is reached.
If the initial guess for a and the shape of p(g,golzo) is
such that this procedure converges to the global maximum,
then this procedure will in fact correspond to that

joint MAP estimate of the parameters a and s Thus,

S5°
in essence, this attempt to simplify the problem computa-
tionally corresponds to augmenting the desired set of
parameters a with the additional parameters S5

V.3.2 Maximization of p(syla,y,)

From the discussions in Chapter IV, maximizing
p(glgo,zo) which is eguivalent to maximizing p(§i§o)
requires the solution of a set of p linear eguations for

a. To show that the algorithm requires solving only

linear equations, we now show that maximizing p(gotg,xo)
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is also a linear problem.

From Bayes' rule, p(golg,zo) can be denoted as

P(syla)
P(EOIE;'ZO) = P(zol_a_rio)' m (5-8)
Denoting p(zolg,go) by
N-1
Plyylarsy) = p(y(n)|a,s,,y(n-1,0))
n=1
" Py (0)[a,s,) (5-9)

and noting that p(y(n)|g,§o,y(n-l,0)) is Gaussian with
mean of s(n) and variance of oé for 1 < n < N-1 and
p(y(O)lg,go) is Gaussian with mean of s(0) and variance

2 .
of 03, P(Y,lass,) can be denoted as

N-1

1 1 2
ply~la,s.) = cexp(-—= °* ] (y(n)-s(n))*)(5-10)
L1273 (2m§)N; c 2°c21 n=0

Combining equations (4-6) and (5-10) with egquation (5-8) with

the assumption that g and s, are given and noting that

I
p(yyl2) is not a function of Sq
- . l L] -£ -
P(syla,y,) = constant T exp(-3 &) (5-1la)
ol

and N-1 N=1

so= 0 1 (sm-aTrs@-la-pn? + LT (yin)-s(a))

3 g n=0 95 n=0

(5-11b)
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Maximizing p(golg,zo) is equivalent to minimizing Ep in

equation (5-11b) and thus we choose s. that satisfy the

_O
set of linear equations,
de
5s (i) = 0 for i =0,1,2,....,N-1 (5-12)

(5-12)

A closed form expression for the

can be obtained by representing

solution of equation

the speech model

with equation (3-6).

From equation (5-1),

p(y(N-1,0) |s(N-1,0))

2

= N(E(N—l,O),od°I) (5-13a)
From equation (3-6e) with u(n)=g-'w(n),
p(s(¥-1,0) [a) = v((1-3) tears. . o (r-m) Thecx-aTH
(5=-13b)

We now combine equations (5-13) with equation (5-8)

assuming that g and s. are given and noting that p(zolg) is

I
not a function of §O' The result is that

p(g(N-l,O)ig,zO) = N((R_™ + Jf- I) °(j§
o
d
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where

S 2
B = (I-A) "rApes,

and R = g% (1-a) T ((z-a) 7 HT

(5-14Db)

Therefore, maximizing P(§0|E'Zo) is equivalent to estima-

ting S5 by
= = .+ L o -1, -
g, = Elsglaryyl = (RST+ =2 I) (02 Yo*R, T m)  (5-15)
d é

An alternative way to maximize p(iolg,xo) is frcm
the smoothing form {33,34] of a Xalman filter. As we
discussed in Section III.3, equation (3-13) of the
noisy speech model can be represented in the form of
equation (3-7) with x(n), F(n), G(n), u(n), z(n), H(n)
anéd v(n) given by equation (3-9). As we discussed in
Section 1IV.4.1, it is well known that for equation (3-7)
with 2ero mean white Gaussian u(n) and v(n) uncorrelated
with each other (this corresponds to egquation (4-23)),
the smoothing form of a Kalman filter leads to
E(x(n) |2(N-1,0), F(n)] for n=0,1,2,....,N-1 which corres-
ponds to E[golg,zol. Since p(golg,xo) is jointly Gaussian,
E[gofg,zol is also the MAP estimate of s, that maximizes
p(go[g,zo). The Kalman filtering approach has an advan-
tage in that only pxp matrix (the state x(n) has » elements)
operations are required while eguation (5-13) requires

NXN matrix operations. 1
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V.3.3 Linearized MAP Estimation Procedure
Summarizing the steps involved in the linear imple-

mentation method, we have

Step l: Begin with éi’ the ith estimate of a.

Step 2: Obtain §0i+l' the i+lst estimate of S’ by

solving equation (5-12), from egquation (5-15),

or from the smoothing form of a Kalman filter.

Step 3: Obtain §i+l’ the i+lst estimate of a, by minimiz-

ing equation (4-19) with §O obtained in

Step 2.

The above steps complete one iteration and the procedure
can be continued for as many desirable number of iterations.

The initial estimate & , may be obtained by simply applying

0
the correlation method of the linear prediction analysis
to XO' We'll refer to this algorithm as the "Linearized
MAP" (LMAP) estimation procedure.

In our discussions so far, we have assumed that g
and §I are known. Even though these parameters are not
known exactly, we might expect to make some reasonable

guess of g and s For example, in the LMAP estimation

T
procedure, for each iteration when Step 2 is completed,

we have an estimate of 55° Before going to Step 3, we
could maximize p(g,g,gllgo) that leads to eguations (4-7)
and (4-9) from which g and s; can be estimated. Then we
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can assume that these estimates are exact and use them
in step 3 in the current iteration and step 2 of the
next iteration. Another possibility for estimation g

and s. is to jointly estimate a,g and s. in step 3 from

I I
55 estimated in step 2 with the assumption of no a

priori information of g and a general Gaussian density
assumption of a and St
N(y(-1,-p), cg I). In Section IV.3.l, it was shown

An example of p(il) could be

that p(g,g,§I|§o) could be maximized by solving a set of
linear equations if no a priori information of a,g and

Sr is available. When a priori information of a and

s; is available, jointly maximizing p(g,g,gilgo) is a

non-linear problem. However we can again solve iteratively

by maximizing p(a,s ) with respect to a and s. and

r19:85 1

then maximizing p(gli,g,gI,§O) with respect to g for each
iteration. Maximizing p(g,illg,go) again involves an
iterative procedure in which p(g|§I,g,§O) is maximized |

with respect to a and then p(glli,g,§o) is maximized with

respect to s, for each iteration. It can be shown7 that

I
the above procedure never decreases p(g,g,gIlgo) at each
iteration. Maximizing pl(als;,9.s,), P(s;la,9,s,), or

p(glg,iI,go) involves® solving a set of linear equations.

P

7This statement can be proved in an analogous manner as
in equations (5-5), (5-6) and (5-7).

8The derivations are similar to the derivations in the

four cases (Sections IVv.3.1, 1IV.3.2, IV.3.3, and 1IV.3.4) and
they begin from equation (4-6).
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A third possibility for syorg is simply to assume that

S; = 0 as we did in case 2 (Section IV.3.2) which led to
the correlation method of the linear prediction analysis,
and estimate g from the energy considerations which will
be discussed further in Chapter VI.

The discussions so far were based on the assumption
that the primary interest is in the estimation of a. It
is important to note, however, that the LMAP estimation
procedure estimates £5 in the process of estimating a by
;O = Elsylary,!- ;O estimated in this manner can be
directly used as enhanced speech. Therefore the LMAP
algorithm discussed in this section can be used not only

for the bandwidth compression but also for the enhancement

of noisy speech.

V.4 Revised Linearized MAP? (RLMAP) Estimation Procedure
V.4.1 Motivation for the Revision
A careful observation of the LMAP estimation proce-
dure discussed in Section V.3 leads to another estimation

procedure that again requires solving a set of linear

.

equations in an iterative manner. 1In step 2 of the LMAP

estimation procedure, we estimate S5 by E[golg,zol. In
step 3, we note that the MAP estimate of a corresponding

to maximizing 9(5150) uses the values s. to form prcducts

20

Y ~

' of the form s(i)-s(j). Thus estimating o in step 2 by
]-. E[golg,zol corresponds to estimating s(i)-+s(j) as
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s(i) s(3) = Els(i)]a,y,) - E(s(3) |a,g] (5-16)

As an alternative, we can consider generating directly the
MMSE estimate of the product s(i)*s(j). Thus the estimate

of s(i)*s(j) is given by

s(i)-s(3) E[s(i)°s(j)|§,xol (5-17) .
In this method, then, we follow the same procedure as we

did in the LMAP method with the difference in that

s(i)+*s(j) is estimated by equation (5-17) rather

than equation (5-16).

V.4.2 Estimation of s(i)-s(j) by Els(i) - s(j)la,y,]
In this section, we show that E[s(i)-s(j)la,y,]

can be obtained by solving sets of linear egquations.
From the expression of p(§olg,xo) in equation

(5-11), ep in equation (5-11b) can be written as

Nil N-Z'l
E = B., (s(i) = m,)*(s(j) - m,) + constant
P i=0 §=0 1] 1 J J
(5-18)
. C e . . -1
' 3
Since p(§o|5,zo) i1s jointly Gaussian in Sy [yij] is
a covariance matrix for S, conditioned on a and Yy Where
[Sijl-l represents the inverse of a matrix whose ijth
element is 3ij' Denoting this covariance matrix by [Yij}
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(iee., Dyyyl = (8417H),

Yig = z[(s(i)-z[s(i)lg,xol)-(s(j)-s[s(j)lg,zol)lg,xoj

= Els(i)-s(j) |a,g 1 -Els (i) |a,y ] *Els(j) Ja,y ]  (5-19)

Therefore,
Els(i)-s(3) |a,y,) = Yij+E[s(i)\g,XO]-E[s(j)lg,zol (5~20)
in which [y..] is given by (8 ]-l
ij ij '
A closed form expression for Yij and therefore for
E[s(i)'s(j)lg,xol can be obtained by representing the
speech model with equation (3-6). From equation (5-14),

P(§O|§,zo) is given by

Plsylaryy) = N(m,v (5-21a)
in which
-1 -1,, 1. -1,
B = (R™ + 5°I) "t ( Sy oy R Cm) (5-21b)
Qg g
d d
and
= R+ L.t -
vV = [Yij] = (Rs + 5 I) (5-21c)
%

where m_ and Rs are given by equation (5-14Db).

Since

Vo= E((sy-Elsy}a,¥g)) + (5o-Elsgiarzol) T2
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= E[§0°§gle:xol - Etgole.zol-Etggig,zol, (5-22)

Elsy solangg] = ¥ + Elsgla,y ) E(s]la,g ) = vemenT (5-23)
in which m and V are given by equation (5-21). Egquation
(5-23) is a closed form expression for E[s(i)'s(j)|g,zol
for 0<i, j<N-1.

An alternative way to obtain Yij in equation (5-20)
is by representing the noisy speech mocdel with equation
(3-13). When u(n)=g-w(n), equation (3-13) is a special
case of equation (4-23)., Then from the smoothing form of
a Kalman filter, we can obtain the covariance function
of the states conditioned on all the observations and
known matrices such as F(n), which in our case directly
leads to Yij' The Kglman filtering approach has an advan-
tage in that only pxp matrix operations are required while

equation (5-23) requires NxN matrix operations.
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V.4.3 RLMAP Estimation Procedure 1

Summarizing the steps involved in the linear imple~ 1

r mentation,

Step l: Begin with &,, the ith estimate of a.

Step 2: A. Obtain 8§ the i+lst estimate of

=0i+l’
Sy by solving equation (5-12), from
TS ' equation (5-15) or from the smoothing

form of a Kalman filter.

B. Obtain Bij from equation (5-18) and Yij

-1

from [Yi ] = [Bij] , or obtain Yij

]
from equation (5-21lc), or from the
smoothing form of a Kalman filter.

C. Estimate s(i)-s(j) from equation (5-20)
with the results obtained in the steps

A. and B. above, or estimate s ~sT from

20 30
Equation (5-23).

Step 3: Obtain ai+ the i+lst estimate of a, by

ll
minimizing equation (4-19) with s(i)-s(j)
T . ‘ .
Or s,°S, obtained in Step'2.

a

i The above steps can be continued for as many
; desirable iterations. The initial estimate 4, can be

obtained by simply applying the correlation method of the

linear prediction analysis to XO' Like the LMAP case,




-115-

there are a number of ways of obtaining g and S; which
are the assumed known variables in the algorithm. The
possible methods discussed in Section V.3 are equally
applicable to the algorithm discussed in this section.
We'll refer to this algorithm as the Revised Linearized
MAP" (RLMAP) estimation procedure.

To emphasize the difference between the LMAP and
RLMAP algorithms, a block diagram that represents one
iteration of the two algorithms is shown in Figure 5.1.
The only difference between the two algorithms is an
55 §g in +he RLMAP
algorithm. Compared with the LMAP algorithm discussed

additional term V in estimating

in Section V.3, the RLMAP algorithm is computationally
less tractable. As will be discussed in Chapter VI,
however, when N is assumed to approach «, the RLMAP
algorithm is slightly more complex in its computation
than the LMAP algorithm. In the RLMAP algorithm, there

are at least two ways s. can be estimated. One way is

20
to use §O cbtained in Step 2A. This is equivalent to
estimating sy by E[solg,zol. Alternatively, s, can be

estimated by forming ¢s(n) from s(i)+*s(j) and assuming
some phase of $o° %
speech if speech enhancement is desired.

V.5 Extension to Colored Background Noise Case

Our discussions in Sections V.2, V.3 and V.4 are

The estimated 8. can be used as enhanced




~

ai

l

For LMAP  sosY

T

m-m

For RLMAP s.-s3%

m-m+V

E [$0!Gi,Yo) - E[ 501G, Yo ]

E[So‘iz |ﬁ| ,Mo]

!

Obtain &;,,; by minimizing

equation ( 4-19) with so-s%

l

Qiet

Figure 5.1 One iteration of LMAP and RLMAP algorithms.

m and V are given by equation (5-21) in the text.
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based on white Gaussian noise as the additive background
noise. In this section, the theoretical results are
extended to the case when the background noise is Gaussian
but colored. When the background noise is colored, all
the discussions in the previous three sections remain
unchanged except that estimating §O-§g by E[§o|g,zo]
-E[gglg,zol or E[§O-§g|g,zo] should again be shown to
be a linear problem.

From equation (3-6e) with u(n) = g.w(n), equation

(5-14) can be easily generalized as

p(§(N—l,0)lg.zo)

_ -1, .-1,-1_,.-1, -1, -1, _-1-1 _
= N((RST+R37) "+ (Rg ¥y + Ro-'m), (RJT*R3) D) (5-24)

in which
- - -l. -
m, = (I -A) Ar*s.
R = g (r-a "tz -aHT
Ry = Eld(N-1,0) +d” (N-1,0) ]

which is obtained from the assumed known statistics of d(n),
and A and AI are defined in egquation (3-6).

Equation (5-24) can be used to show that estimating

m
-

T .
s, by E[Eolg,zol and s, So by E[gogolg,zol are still

linear procblems since

E(

Solanygl = (RJ™ + Ry F(RGTryy + R_Tm) (5-25)
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7 -1 _-l.-1
and  Elsy'sglaryy] = (R;™ + RS

+ E[§Olg,zol°E[§g|g,zol (5-26)

V.6 Relationship Among Maximization of p(ilzo), LMAP,

and RLMAP Algorithms

The LMAP and RLMAP algorithms have been developed
in this chapter by attempting to suboptimally maximize
p(ilxo). Some recent theoretical work by Musicus [38]
carried out in parallel with this dissertation shows
that a close relationship exists among the LMAP and RLMAP
algorithms and the problem of maximizing p(glzo). More
specifically, suppose that g is known and §I=g. Represent-
ing p(glxo) by f(a)-exp(g(a)), the LMAP and RLMAP algorithms
increase a(a) and p(glzo) respectively at each iteration
unless a converging solution is reached. Therefore if

g is assumed known and s. is assumed to be 0, then the

I
RLMAP algorithm is one way to maximize p(glzo). Further
theoretical work related to the above discussions is

currently under way and will be reported by Musicus [38].




Yo

T -

-119-

CHAPTER VI IMPLEMENTATION: THREE NOISE

REDUCTION SYSTEMS

VI.1 Introduction

In this chapter, three noise reduction systems that
are implemented and evaluated are discussed. Two systems
discussed in Sections VI.2 and VI.3 are derived by
approximating the LMAP and RLMAP algorithms discussed in
Chapter V. Even though the LMAP and RLMAP algorithms
require solving only sets of linear egquations or imple-
menting a Kalman filter, some approximations lead to
computationally simpler systems by making use of an FFT
algorithm. In Section VI.4, a speech enhancement system
discussed in Section II.2.6 is summarizea. The primary
purpose of implementing this system is to compare it with
the other two systems discussed in Sections VI.2 and VI.3.
Since the system summarized in Section VI.4 is probably
as good in its performance as any other speech enhance-
ment system summarized in Chaoter II, such a compariscn
can provide an indication of the performance of the two
systems derived from the theoretical framework of this
dissertation relative to other speech enhancement systems
previously proposed. The results of the evaluation of
the three systems will be presented in Chapters VII and

VIII.
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VI.2 System A

For each iteration of the LMAP algorithm discussed
in Chapter V, it is in general necessary to solve a set
of p linear equations to estimate a from §O and N linear
equations to estimate s, from & and Y, Since N in

20
general is in the order of several hundred for a typical
application in speech, solving a set of N linear equations
simultaneocusly can be computationally tedius. Thus we
develop a procedure that approximates solving the set

of N linear equations.

From egquations (5-11b) and (5-12),

2 )
g : , .
S—yli)=s(i)- § a, *s(i-k) - ) ay *s (i+k)
cd k=1 k=1
gZ
+ a, *a,*s(i+k-2) + ‘s (1)
k=1 221 K % od2
for 0 < i < N=-p-1 (6=-1a)
g2 P N-%—i
Zx—ry(i) = s(i) - ) a. +sl(i-k) - a, *s(i+k)
o5 k=1 KX k=1 K
e} ' 2
+ § a, ra, s(i+k-2) + L +s(i)
k=1 2=1 = * odz
with s(N+p-3,N) = 0 for N-p<isN-2 (6.1b)
and
2 o) 2
ey (i) = s(i) - | ak's(i-k)+g-7's(i) for i=N-1 (6-1c)
Od k=1 ° d




-121-

Solving ecquation (6-1) for T in general requires

solving N simultaneous linear equations. However, if we

assume that s(p-1,0) is also given as well as s then

Il
the N equations do not have to be solved simultaneously.

More specifically, rearranging equation (6-la),

(i+p) (1) § (i-k) pil (i+k)
a_+s(i+p) = s(i) = a, *s(i- - a, ss{i+
| 2 2
+ ) a, ra, s (i+k-2) + &5 +s(i)-Z5 vy (i)
k=1 =1 o} g
d d
for 0 < i < N-p-1 (6-2)

s(i+p) in equation (6-2) for 0 < i < N-p-l1 can be solved
individually if s(p-1,0) is given since the right hand
side of equation (6-2) involves terms of s(n) for n<i+p.
s(p-1,0), of course, is not given, but we could assume
s(p-1,0) = y(p-1,0). For N sufficiently large relative
to p, we would in general expect that the effect of
a specific assumption of s(p-1,0) is rather small.

In the above, we have developed a procedure which
does not require solving a set of N linear egquations
simultaneously. However, solving for s

..O
(6-2) still reguires in the order of N-p2 rnultiplications.

from equaticn

Furthermore, once §O is estimated, the correlation
function has to be fZormed from §O' An alternative approach

which is computationally simpler and leads to a system with
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a simple interpretation is to consider the problem in
the frequency domain. More specifically, z transforming

ecuation (6-la) with the assumption that the difference

equation holds for all i (i.e., N==),
g2 P - P k
—7—-Y(z) = S(z) - Z ak.s(z)-z - Z ak.s(z)-z
o k=1 k=1
d
P p _ 2
+ 73 aeaes(@) 2T+ Sls(e) (6-3)
k=1 2=1 L o3 .
and therefore
P (w) -
Slw) = ¥(y)» ——S—— (6-4a)
P_(p) + ¢
] d
where
g2
Ps(w) = s EZJ . ? § (k 2)
-2, a, .coskw + a, *a,*cos(k-2)w
ki1 X k=1 2=1 & %
2
= =] — (6-4b)
1= § e eeTivk
k=1 =

Equation (6-4) is a non-causal Wiener filter. This result
is guite reasonable since it is well known that when
y{n)=s(n)+d (n) where s(n) is uncorrelated with d(n) and
the power spectral densities of s(n) and 4(n) are known,
the MMSE estimate of s(n) from y(n) can be obtained by

a Wiener filter. For this reason, then, for a more general
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case when the background noise is colored, the procedure
for obtaining s(n) by equation (5-20) is equivalent to
estimating s(n) by filtering y(n) with a linear, time

invariant filter with the frequency response given by

Ps(w)

Hi{w) =
Ps(m) + Pd(m)

(6=5)

and Pd(w) represents the power spectral density of the
background noise and Ps(w) represents the power spectral

density of speech given by eguation (6-4b).

Theoretically, the non-causal Wiener filter requires

an infinite amount of data. 1In practice, we have only N
points of data that can be modelled as yw(n)=y(n)-ws(n)

where ws(n) represents a sufficiently smooth analysis

window over the effective length of h(n). For a sufficient-

ly large N and small effective length of h(n) relative

to N,

"

(y(n) *w_(n)) * h(n) (y(n) * h(n)):ws(n)

s(n)-ws(n) (6-6a)
and therefore yw(n) * h(n) = sw(n) (6=-6b)

Based on equation (6-6b), sw(n) is estimated by

Thaa

R ST~y G
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~

sw(n) = yw(n) * h(n) (6-6c)

We expect that the approximation given by equation (6-6b)
is not good for n close to 0 or N-1 but is adequate for
0<<n<<N;l. For a sufficiently large N, it is expected
that the poor approximation at the edges of the window

do not have a large effect. From egquation (6-6c),
Sw(w) = Yw(w"H(w) (6=7a)
- 2 _ ) 2, 2 -
and |8, @[ ® =1y (w) | |H ()] (6-7b)

L Now if equation (4-22) is used rather than equation (4-19)
in step 2 of the LMAP algorithm, the function that is
directly used in minimizing ep in equation (4-22) can

be expressed as

@ ~

o (n) = ig_m S, (1)+s (i-n).

Then s;(n) and ¢;(n) can be obtained by inverse Fourier

transforming S;(w) and IS;(w)lz, i.e.,

s.(m) = FH(s (w)] = Py, (u) +H(w)] (6-8a)
sotm) = 7 his] w1 = PRy () 12 jE () %] (6-8D)
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Denoting the M point Discrete Fourier Transform (DFT)

of a sequence x(n) by X(k),

M-1 ~32L ko
X(k) = ] x(n)-e = X(w)
n=0 w=zv_;r_k

Since x(n) is related [39] to the Inverse Discrete Fourier

Transform (IDFT) of X(k) by

) x(n+k*M) = IDFT[X(k)],

k.-:-co

equation (6-8) leads to

s,

1
@® A ~
kz_w s, (n+kM) = IDFT[S (k)] = IDFT(Y (k) *H(k)] (6~9a)
Y o (n+k-M) = IDFT[¢_(k)] = IDFT[IYw(k)I «|H(k)|“](6-9Db)
k==w
For a finite effective length of sw(n) and ¢s(n) and for
a sufficiently large M,
B4 A ~
kg_m s, (n+k+M) = s _'(n)
and
o ~ ~
I og(n+ked) = 4 (n)
K==x '
i
With this assumption, we estimate sw(n) and 3s(n) by
A -
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A

sw(n)

IDFT

IDFT

¢;(n)

~

sw(n) in equation

¢s(n) in equation

2 by minimizing Ep
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(¥, (k) +H (k) (6-10a)
(y, 0 |2 1) |2 (6-10b)

(6-10a) can be used as enhanced speech.
(6-10b) can be used to estimate the

in equation (4-22).
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Now, we summarize the specific algorithm that has

been implemented and evaluated.

Step 0: Obtain &, the initial estimate, by the
correlation method of the linear predic-
tion analysis assuming sw(n)=yw(n)

Step 1l: Begin from &y the ith estimate of a.

Step 2: A. Estimate g by an energy measurement;

n g 2 2 2
i ‘dw= §  yo(n)=] w_o(n)-c
27 v -jkwlz a W n S d

where a corresponds to a .

B. Estimate ¢_(n) by IDFT [lyw(k)lz- H(k)|2]
where
( Ps(w) g2
H(w) = with P_(w) =
Ps(w) + Pd(w) S ‘l- % ,e‘jkw|2
ki1 K

and a corresponds to &;. If § (n) is desired

for speech enhancement and if this is the

last iteration desired, s;(n)=IDFT(Y(k)'H(k)).
Step 3: With the first p+l points of ¢;(n) and a and P,

given by the available a priori knowledge of a,

estimate the LPC coefficient vector a,  , by
minimizing equation (4-22). In the case wien

no a priori information is available, we let PO
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approach «+I thus reducing the minimization of eguation
(4=-22) to the correlation method of the linear

prediction analysis.

The above steps complete one iteration and we'll
refer to the above system as System A. It is noted that
System A can be used to estimate sw(n) as well as a,
and that System A does not require an estimate of Sy
Further, it is noted that the phase of S(w) estimated
in System A is the same as the phase of Y(w). This is
because the frequency response of a non-causal Wiener
filter H(w) is real and positive and thus zero phase. In
various speech enhancement systems discussed in Chapter II,

we have seen that the phase of S(w) used is the same as

the phase of Y(w).

VI.3 System B

In Section VI.2, System A was developed based on
the LMAP estimation procedure discussed in Section V.3.
In this section we develop a system that is based on the
RLMAP estimation procedure discussed in Section V.4.
FProm equation (5-20), the difference ketween the LMAP
and RLMAP estimation procedure is the additional term Yij
in estimating s(i)°*s(j). The system develoved in this

section is a modification of System A that incorporates

the term v...
1]
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In general, to obtain 1 it is necessary to perform

3
at least an inversion of an NxXN matrix since [Yij] =
-l. However, as we let N approach «, a computation-

[8; 5]
ally simpler procedure can be developed. More specifically
for a very large N, from equations (5-11lb) and (5-18),

Sij can be expressed as

where
1 2 .
a,. = == +(1+ § ar) for |i-j|=0
ij g2 =1 k
1 P"%i"Ji
= - *a R .l . *q R R
"2 %)i-j| g2 ko1 % "%k+|i-5|
for 0<[|i-j|<p (6-11b)
1 ..
i L IPPeY for li-j|=p
g
=0 ‘ for |i-j|>p
and
= 1 et =
eij = = for |i-j|=0
, d (6-11c)
" 0 otherwise
'
.. From equation (6-11l), since aij and aij depend only on

the time difference i-j, representing &ij' eij and bij by

~ e e . e - .




a(n)=a(i-j)=al

where a(n)

and 8(n)

From eguation
a(n)gf

A(w)
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j° 9(n)=6(i-3)=6ij and 8(n)=8(i-j)=8ij,
B(n) = a(n) + 8(n) (6-12a)
1 2 —_
«(1+ E a,) for |n|=0
g2 k=1 K
1 1 P-lnl
- - a -+ . a, *a
;7 In| ;7 Koy K k+|n]
for 0<|n|<p (6=12b)
1 (_ -
- ;7 i for |n|=p 4
0 for |n|>p
35 for n=0
%a
(6=12c)
0 otherwise

(6-12b), taking the Fourier transform of

2 -1
Fla(n)] = ( -1 ) (6-13)

L - § ak'e'jk“lz

9This result can alternatively be obtained by noting that

[a..].l

ij

approaching =,

is the covariance matrix of p(syia) and that for N

uij depends only on the time cdifference i-j.
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From equations (6-4b) and (6-13),

Aw) = 5—%3 (6-1da)
S
2
and P (w) = d - (6-14b)
1 - ak-e-ka|
k=1

From equations (6-12) and (6-14),

Blw) = A(w) + 9(w) and therefore,
_ 1 1 -
d
Since Yij = [Bij]-l and Bij depends on the time difference

i-j, representing Yij by vy(n) = y(i=-j)= Yij’

y(n) * 8(n) = 8(n) anéd therefore,
Fw) « B(w) =1 (6-16)

From equations (6-15) and (6-16),

Ps(w)'cg
T(w) = —_— (6=17)
Ps(w)+od

and Ps(u) is given by equation (6-14b).

. - 1l . . -
Since [fij] represents the covariance matrix cf

the background noise, for ! approaching =, 28(.)=1/P,(.)

d
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x
+ 9 . .__*w_(i)*w_(i-n) for 0<n<p. 6-20
LYy jan s(1) s( ) or 0<n<g ( )
l:-w
Approximating v, ien by v (n) for 0O<n<p,
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where Pd(w) is the power spectrum of the background noise.
Therefore, a more general result of equation (6-17) that
also applies to the colored background noise is given by

Ps(w)°Pd(w)
SO e m (6-18)

and Ps(w) is given by equation (6-14b). From equation

(6-18),

o -1 Ps(w)-Pd(w)

From eguation (5-20),

~

s(i).s(j) = E[s(i)-s(j){g,xol = E[s(i)lg,zol
Els(3) la,yq] + iy
Denoting s(i)-ws(i) by sw(i) and letting c;(n)= :
-~ lz—\ﬁ 4

sw(i)-sw(i-n) for 0<n<p,

¢;(n) = ] Els(i)]a,y ) Els(i-n)[a,y ] w (i) -w_(i-n)

j==w
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! Els, (1) |a,y 1 Els (i-n)|a,

i=-®

Xo]

by ¢ _(n) in equation (6-8b) , and 'E w (1) *w_(i-n)

l==x®

w, (i) for 0 < n < p,

PS(U) 2 d 2 .
Ps(w)+Pd(5T) M .Z ws(l)

i=-x

° - 2
o (m) = Fh([y, () |? -

Ps(w)'Pd(u)
. . PS(B)+Pd(w) ] for 0<n<p (6-21)

In an analogous manner as equation (6-10) was obtained from

equation (6-8), ms(n) is estimated from equation (6-21) by

P_ (k) 2 ®

. 2 S 2.
$_(n) = IDFT[|Y (k) || e T W
? s w Ps(k)+pd(k) L, Ys
Ps(k)'Pd(k)
" PP (k) [oF 0ice (6-22)
S d
? and Ps(u) is given by ecquation (6-14b). Eguation (6-22)
|

can be used in minimizing =_ in equation (4-22).

Now we summarize the specific algorithm that has been
}

implemented and evaluated.

L] - - . - ’ - ‘
A g m— —— )
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~

Step 0: Obtain EO by the correlation method of the

linear prediction analysis assuming sw(n) =

yw(n).
Step 1l: Begin from a,, the ith estimate of a.
Step 2: A. Estimate g by an energy measurement;

2
EWS (n) T 2

n 5= R f g - . duw

= 1 v2m- Wi

n n
where a corresponds to a,.

B. Estimate ¢s(n) by

5 Ps(k) P (k)
IDFT(|¥ (k) | E we (1) P_(K)+P (k)]
l -0 d
P (w)
where H(w) = P_(9)+P_(w) '
g2
P_(w) =
S ;l- ? a .e-jkw||2
k=1 %

and a corresponds to éi' If s;(n) is desired
and if it is the last iteration to be performed,
estimate s_(n) by IDFT[Yw(k)~H(k)].

Step 3: With the first p+l points of b;(n), and E and

P given by the available a priori knowledge

M O

o

a, estimate a, , by minimizing equation (4-22).

kit
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The above steps complete one iteration and we'll

refer to the above system as System B. It is noted that

System B can be used to estimate sw(n) as well as a.

VI.4 System C
This system is based on a speech enhancement method
discussed in Section II.2.6. The specific algorithm

implemented and evaluated is given below.

Sa

Step 1: Estimate [Sw(w)l2 by
50t 12 = [y () |° = k-ELID, (W) %)
for |¥ (w2 > k-EL[D. (w) %)
W ! -— W

0 otherwise

L, . ‘
for some constant X. Sw(@), ‘w(“) and Dw(“)

represent the Fourier Transform of the windowed
segment of speech, noisy speech, and noise

respectively.

Step 2: Obtain 4_(n) by IDFT[|S (k) |%]. If s (n) is

desired, then s _(n) is estimated from Esw(w)l

in Step 1 and the vhase of Yw(“)’

Step 3: Estimate a by minimizing ¢_ in egquation (4-22)
a oy g o :

~

with the first p+l points of 5s(n) obtained in

Step 2.
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We'll refer to the above system as System C.
Compared with System A or System B, System C is computa-
tionally simpler. It is also noted that when k=0 in
System C and no a priori information is assumed, it
corresponds to estimating a by the correlation method
of the linear prediction analysis with the assumption of

sw(n)=yw(n).
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CHAPTER VII EXAMPLES AND ILLUSTRATIONS

VII.1 Introduction

The three systems developed in Chapter VI have
been applied to both synthetic and real speech data at
various S/N ratios and in this chapter a few examples are
illustrated. 1In Section VII.2, examples in which the
systems are applied to synthetic data are illustrated.
In Section VII.3, examples in which the systems are
applied to real speech data are illustrated. 1In all
the examples considered in this chapter, noisy data are
generated by adding zero mean white Gaussian background
noise and the S/N in dB is defined as lO-log(fsz(n)/
% dz(n)) where the summation is over the lengzh of the
analysis segment. In all the figures in which a time
waveform is displayed, the duration is 25.6 msec. 1In
all the figures in which the log maghitude spectrum is
displayed, the range is approximately 50 4B and the
angular frequency is between 0 and - that corresponds to
the analog frequency between 0 and 5 kHz at 10 kHz

sampling rate.

VII.2 Application to Synthetic Data

The synthetic data used in the examples are based on
a 10 kHz sampling rate and are generated by exciting a
tenth order all pole filter whose coefficients were derived

from segments of real speech data. The excitation was
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chosen in one set of examples to be white Gaussian

noise and in the other set of examples to be a periodic
impulse train. As we discussed in Chapter III, all the
theoretical results in Chapters IV, V and VI were derived
assuming a stochastic excitation. For speech without
background noise, systems derived from this point of view
have empirically been shown to perform well even when the
excitation is a periodic impulse train and it will be
seen in thischapter and Chapter VIII that this statement
generally applies to the three systems under consideration.
In the examples considered in this section, the analysis
is based on 256 synthetic data points, the order of the
all pole system is assumed to be 10, and the S/N ratios
considered are 20 4B, 10 dB and 0 dB.

In Sections VII.2.1l, VII.2.2 and VII.2.3, the perfor-
mance of the three systems are discussed and illustrated
individually based on one specific svnthetic data segment
and then later a few more examples are illustrated. The
synthetic data used in Sections VII.2.1, VII.2.2 and VII.2.3
are shown in Figures 7.1 and 7.2. In Figure 7.1(a)
is shown the synthetic data when the excitation is random
noise. In Figure 7.1(b) is shown the log magnitude spectrum
of the data in Figure 7.l1(a) and a tenth order all pole
fit to the spectrum by the correlaticn method of the linear
crediction analysis. 1In Figure 7.1(c) 1s shown the synthetic

data generated by the same all pole coefficients as in
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FPigure 7.1 (a) Synthetic data segment with random noise
excitation; (b) Log magnitude of the spectrum of the

synthetic data in (a) and an
by the correlation method of
(c) Same as (a) with a pulse
(d) sSame as (b) with a pulse

all pole fit to the spectrum
the linear prediction analysis;
train excitation;

train excitation
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Figure 7.2 (a) Log magnitude spectrum of the synthetic
data in Figure 7.1(a) and the transfer function that
corresponds to the known all pole coefficients;

(b) Comparison of the transfer functions that correspond

i. ' to the known all pole coefficients in (a) and the estimated
all pole coefficients in Figure 7.1(b)
(c) Same as (a) with a pulse train excitation;

-
’

(d) same as (b) with a pulse train excitation
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Figure 7.1(a) but the excitation is now a train of pulses
whose fundamental frequency is 150 Hz typical of an

adult male speech. In Figure 7.1(d) is illustrated a
tenth order all pole fit to the spectrum by the correla-
tion method of the linear prediction analysis. Since the
data used are synthetic, the all pole coefficients from
which the synthetic data were generated are known. In
Figure 7.2(a) is shown the log magnitude spectrum of the L

synthetic data in Figure 7.l1(a) and the transfer function

that corresponds to the known all pole coefficients. 1In
Figure 7.2(b) is shown the two transfer functions that
correspond to the known all pole coefficients and the all
pole coefficients estimated from the synthetic data by
the correlation method of the linear prediction analysis.
Figures 7.2{(c) and 7.2(d) are equivalent to Figures 7.2(a)
and 7.2(b) with the difference in that the excitation 1is

& train of pulses.

VII.2.1 Application of System A to Synthetic Data

In Figure 7.3 is shown the results of the analysis
based on System A as a function of the number of iterations
when the S/N ratio is 20 dB and the excitation is random
noise. More specifically, in Figure 7.3(a) is shown the
all pole fit to the noisy synthetic data by the correlaticn

method of the linear prediction analysis with the assumption

that sw(n)=yw(n), i.e. 2eroth iteration. Figures 7.3(b),




{ =]

NE & . . . - O 7 S

-142-

—— =

-
!
1
i
i
{
'
i}
§
!
$

e s e A . - o —

r—-
r—

-y

[ ————— e e o ot e
e —————— e e

N

(c)

Figure 7.3 Comparison of System A
(a) Log magnitude spectrum of the synthetic data in
Figure 7.1(a) and an all pole fit to the noisy data spectrum
after the zeroth iteration of System A at S/N = 20 4B;

(b) Same as (a) after the first iteration of System A;

(c) Same as (a) after the second iteration of System A;

(d) Same as (a) after the third iteration of System A
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(c) and (d) represent the transfer functions obtained by

applying System A to the noisy synthetic data after one,
two and three iterations, respectively. 1In each of the
four figures ((a),(b),(c) and (d)), the true log magnitude
spectrum corresponding to the excitation of random noise
is also shown to facilitate the comparisons. Figure 7.4
is the same as Figure 7.3 with the difference in that the
excitation is a train of pulses. Figures 7.5 and 7.6

are the same as Figures 7.3 and 7.4 with the

difference in that the S/N ratio is 10 4B. Figures 7.7
and 7.8 are the same as Figures 7.3 and 7.4 with the
difference in that the S/N ratio is 0 4B. 1In all the
Figures 7.3 through 7.8, the analysis is based on the
assumption that no a priori information of the coefficient
vector is available. From the figures, it can be observed
that for the three 8§/N ratios considered a gocd £it to

the true log magnitude spectrum can be obtained after two
iterations of System A. It is alsc observed that the
performance of the system when applied to the synthetic
data generated by an excitation of a train of pulses is
similar to the case of the random noise excitation.

From the theoretical point of view, it is expected
that a converging scolution after many iterations is more
desirable. 1In general, however, it has been observed that
the converging solution of System A generates the transfer
functicn for which the bandwidths of the poles are smaller

than those associated with real speech. Such a phenomenon




Figure 7.4 Same as Fiqure 7.3 with the synthetic data of

Figure 7.1 (c)
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Same as Figure 7.3 with S/N = 10 4B

Figure 7.5




Figure 7.6 Same as Figure 7.4 with S/N = 10 éB r




Same as Figure 7.3 with S/N = 0 dB

Figure 7.7
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Same as Figure 7.4 with S/N = 0 dB

Figure 7.8

) agrn ange
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can he observed by the general trend of the estimated
transfer Zunctions shown in Figures 7.3 through 7.8
as the number of iterations increases. Thus, in the
actual implementation of System A, it seems desirable

to limit the number of iterations to two.

VII.2.2 Application of System B to Synthetic Data

In Figure 7.9 1s shown the results of the analysis
based on System B as a function of the number of iteraticns
when the S/N ratio is 20 dB and the excitation is random
noise. More specifically, in Figure 7.9(a}) is shown the
all pole fit to the noisy synthetic daéa by the correlation
method of the linear prediction analysis with the assumption
that sw(n)=yw(n), i.e. zeroth iteration. Figures 7.9(b),
(c) and (d) represent the estimated transfer functions
obtained by applying System B to the noisy synthetic
data after two, five and ten iterations, respectively. In
each of the four figures ((a), (b), (c) and (d)), the true
log magnitude spectrum corresponding to the excitation o=
random noise is also shown to facilitate the comparisons.
Figure 7.10 is the same as Figure 7.9 with the difference
in that the excitation is a train of pulses. Figures
7.11 and 7.12 are the same as Figures 7.9 and 7.10 with {

the difference in that the S/N ratio is 10 &B.

"{J

igures

7.13 and 7.14 are the same as Figures 7.9 and 7.10 w

-
=

[
-

a

the difference in that the S/ ratio is 0 dB. Again the
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Figure 7.9 Comparison of System B
(a) Log magnitude spectrum of the synthetic data in
Figure 7.1(a) (random noise excitation) and an all pole fit
to the noisy data spectrum after the zeroth iteration of
System B at S/N = 20 dB;

(b) Same as (a) after the second iteration of System B;

(c) Same as (a) after the fifth iteration of System B;

(d) Same as (a) after the tenth iteration of System B
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Same as Figure 7.9 with the synthetic data of

Figure 7.10

(pulse train excitation)

Figure 7.1 (c)
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Same as Figure 7.9 with S/N = 10 4B

Figure 7.11
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(¢)

iqure 7.12 Same as Figure

7.10 with S/N = 10 4B

;




Same as Figure 7.9 with S/N = 0 4B

Figure 7.13
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Figure 7.14

(c)

Same as Figure 7.10 with s/N = 0 dB
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analysis used in Figures 7.9 through 7.14 is based on
the assumption that no a priori knowledge of the coeZfi-
cients is available.

From the figures, it can be observed that for the
S/N ratios considered, a good fit to the true spectrum
can be obtained after five or more iterations of System B.
It can also be observed that the performance of the
system is similar to both cases of excitation, i.e. random
noise and a train of pulses even though the system was
developed based on the assumption of the random noise
excitation.

It is not theoretically known if System B converges
to a solution. 1In all the synthetic and real speech data
that have been considered, hcowever, it has been observed
that System B appears to converge and the estimate after
many iterations in general fits better to the true log
magnitude spectrum than the estimate obtained after a
few iterations. It has also been observed that the
results after ten iterations correspond reasonably well to

the final estimate.

VII.2.3 Application of System C to Synthetic Data

In Figure 7.15 is shown the results of the analysis
bpased on System C as a function of the scaling constant
"k", a parameter of System C, when the S/N ratio is 20

dB and the excitation is random noise. More specifically,
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Pigure 7.15
(a)
Figure 7.1(a) (random noise

to the noisy synthetic data

(b) Same as (a) with k=1 of
(c) Same as (a) with k=2 of
(d) Same as (a) with k=3 of

Log magnitude spectrum of the

(d)

Comparison of System C

synthetic data in

excitation) and an all pole fit

with k=0 of System C at S/N
System C;

System C;
System C

20 dB;
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in Figure 7.15(a) is shown the all pole fit to the log

magnitude-spectrum of the noisy synthetic data by the
correlation method of the linear prediction analysis with
the assumption that sw(n)=yw(n). Figures 7.15(b), (¢)
and (d) represent the estimated transfer functions obtained
by applying System C to the noisy synthetic data at
k=1,2, and 3 respectively. 1In each of the four figures
((a), (b), (), (d)), the true log magnitude spectrum
corresponding to the excitation of random noise is shown
to facilitate the comparisons. Figure 7.16 is the same as
Figure 7.15 with the difference in that the excitation
is a train of pulses. Figuxes 7.17 and 7.18 are the same
as Figures 7.15 and 7.16 with the difference in that the
S/N ratio is 10 dB. PFigures 7.19 and 7.20 are the same
as Figures 7.15-and 7.16 with the difference in that the
S/N ratio is 0 dB. 1In all the Figures 7.15 through 7.20,
the analysis is based on the assumption that no a priori
information of the coefficient vector is available.

From the figures, it can be observed that for the
S/N ratios considered a good fit to the true log magnitude
spectrum can be obtained when k=2 in System C. It is
also observed that the performance of the system is similar
in both cases of excitation, i.e. random noise and a
train of pulses.

When k egquals zero, System C corresponds to the corre-

lation method of the linear prediction analysis that dces
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(c)

Figure 7.16 Same as Figure 7.15 with the synthetic data of
Figure 7.1(c) (pulse train excitation)
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Figure 7.18 Same as Figure 7.16 with S/N = 10 4B
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not account for the presence of background noise. Thus,

the estimated transfer functicns shown in (a) of Figures

7.15 through 7.20, correspond to the case when k eguals

zero. Frcem many examples of synthetic data, it has been

observed that the performance of Syétem C in terms of the

log magnitude spectrum fit is poor when k is greater than

3. It has also been obkserved that the log magnitude

spectrum fit at k=2 is generally better than the fit when

k=1 which corresponds to the correlation subtraction method.
In the specific example of the synthetic data that

has been considered in Sections VII.2.1l, VII.2.2 and

VII.2.3, a reasonably good f£it to the log magnitude

spectrum can be obtained by any of the three systems

with a proper choice of the system parameter (i.e. the

number of iterations for Systems A and B, and the value

of k for System C). However, when the noisy data have i

no spectral peaks or spectral peaks that are different

from the pole locations of the original data, then th

application of the three systems can result in the estimated

transfer functions whose pole freguencies are different

from those of the original data. This situation can occur

when the overall S/N ratio is sufficiently low in which

case all the pole frequencies can be affected, or when
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the locallo S/N ratios near some pole lccations are
sufficiently low in which case the local poles can »e
affected. 1In Figures 7.21 through 7.24 are illustrated
two such examples. In Figures 7.21(a) and (b) are shown
an example of a segment of the synthetic data and its

log magnitude spectrum. In Figures 7.21(c) and (4d) are
illustrated the noisy synthetic data at the S/N ratio of
-20 dB and its log magnitude spectrum. In Figure 7.22(a)
is illustrated the transfer function estimated frcm the
noisy synthetic data in Figure 7.21(c) by the correlation
method of the linear prediction analysis. In Figures
7.22(b), (¢) and (d) are shown the transfer functions
estimated by System A after two iterations, System B after
ten iterations and System C with k=2. 1In each of the

four figures of Figure 7.22, the true log magnitude
spectrum of Figure 7.21(b) is also illustrated to facili-
tate the comparisons. From Figure 7.22, it is clesar that
the transfer function gensrated by any of the three systems
does not fit the true spectrum well. Figures 7.23 and

7.24 are equivalent to Figures 7.21 and 7.22 with the

loThe local S/N ratio between two angular fregquencies Wy

and w, 1s defined by
2 )

;2

1S (w) «dw

Local S5/N ratio in dB = 10-log

13

&
Y VR [N

9
‘D(w) {~‘d\u

[
—

o e Rt 7o 0

e — g p——— TR
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Figure 7.21
S PO (b)
(c) Noisy synthetic data of (a)

{(a) A synthetic data segment;

Log magnitude spectrum of the synthetic data in (a);
at S/N = =20 d&B;

(d) Leg magnitude spectrum of the noisy synthetic data in (c¢)
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Figure 7.22 (a) Log magnitude spectrum of the synthetic

data in Figure 7.21(a) and an all pole £it to the noisy
synthetic data with k=0 of System C;
(b) Same as (a) with two iterations of System A;

(c) Same as (a) with ten iterations cf System B;
(d) Same as (a) with k=2 of System C
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Figure 7.23 (a) A synthetic data segment;

. . (b) Log magnitude spectrum of the synthetic data in (a); {
(¢) Noisy synthetic data of (a) at S/N = 10 é&B;

(d) Log magnitude svectrum of the noisy svnthetic data in (<) 1
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Figqure 7.24 (a) Log magnitude spectrum of the synthetic
data in Figure 7.23(a) and an all pole fit to the noisv
synthetic data with k=0 of System C;

(b) Same as (a) with two iterations of System A;

(c) Same as (a) with ten iterations of System B;

(d) Same as (a) with k=2 of System C
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difference in that a different synthetic data segment is

used at the S/N ratio of 10 dB. From Figure 7.24, it

is clear that the lower formants where the local S/N

ratio is relatively high are well recovered by the

three systems but the performance is poor for the higher

formants where the S$/N ratio is relatively low.

At a high S/N ratio, the typves of errors discussed

‘e : above do not occur frequently. As the S/N ratioc decreases,
the errors occur more frequently and eventually a point
is reached at which the systems are no longer useful

. for the analysis of noisy speech. In Chapter VIII, this
issue will be discussed in greater detail as the perfor-
mance of the three systems is evaluated by some objective

and subjective tests.

VII.3 Apprlication to Real Speech Data

A number of discussions in Section VII.2 on the
performance of the three systems when applied to the syn-
thetic data in general also apply toc the real speech
data. Therefore, only two examples of real speech data
at the S/N ratio of 10 dB will be illustrated primarily
to demonstrate that the performance of the systems when
. . applied to the real speech data is similar to the case
' of the synthetic data. Again, the real speech data are
based cn a 10 kHz sampling rats, the order cf the all pole

model is assumed to be 10, the analysis is based on 256

“ 4
) - S . N - . - -
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data points, and no a priori information of the all
pole coefficient vector is assumed to be available.

In Figures 7.25(a) and (b) are snown an example of
a segment of unvoiced speech and its log magnitude
spectrum. In Figures 7.25(c) and (d) are illustrated the
noisy synthetic data and its log magnitude spectrum. In
Figure 7.26(a) is illustrated the transfer function
estimated from the noisy speech data in Figure 7.25(c)
by the correlation method cf the linear prediction analysis.
In Figures 7.25(b), (c) and (d) are shown the transfer
functions estimated by System A after two iterations,
System B after ten iterations and System C with k=2.
In each of the four figures of Figure 7.26, the true
log magnitude spectrum of Figure 7.25(b) is also illustrated
to facilitate the comparisons. Figures 7.27 and 7.28
are agquivalent to Figures 7.25 and 7.26 with the differ-
erce in that a different real speech Zdata which is voiced
i1s used. 1In the two examples ccnsidered, a good £it to
the spectrum can be obtaine:d by zhe three svstems. Again
when a sufficiently larje amcunt of background noise
is added to speech, the errors discussed in Section VII.2
also occur. This can be observed to some extent for the
higher formants in Figure 7.28.

In this chapter, wvarious examplas were shown o
gualitatively iliustra«e the cerfcrmance of the three

syvstems when applied to both synthetic and real sceech data.
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Figure 7.25 (a) A real data segment of unvoiced speech;
(b) Log magnitude spectrum of the real speech data in (a)
(c) Noisy speech data of (a) at S/N = 10 dB;

(d) Log magnitude spectrum of the noisy speech data in (¢)
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Figure 7.26 (a) Log magnitude spectrum of the real speech
data in Figure 7.25(a) and an all pole fit to the noisy speech

data with k=0 of System C;

(b) Same as (a) with two iterations of System A;
(c) Same as (a) with ten iterations of System B;
(d) Same as (a) with k=2 of System C
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- (d) Log magnitude spectrum of the noisy speech data in (c¢)
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Figure 7.28 (a) Log magnitude spectrum of the real speech

; data in Figure 7.27(a) and an all pole f£it to the noisy

. speech data with k=0 of System C;
; (b) Same as (a) with two iterations of System A;
(c) Same as (a) with ten iterations of System B;

(d) Same as (a) with k=2 of System C
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In Chapter VIII, a more detailed and guantitative discus-

sion on the performance of the three systems will be

presented based on some cobjective and subjective tests.
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CHAPTER VIII EVALUATION

VIII.1 Introduction

In this chapter, the performance of the three
systems developed in Chapter VI is discussed in greater
detail and more gquantitatively based on some objective and
subjective tests. Even though the theoretical results can
be apvlied to colored noise as well as white ncise, the
background noise considered here is white Gaussian
background nocise. In Section VIII.2, the results of
an objective test are discussed. In the objective test,
the synthetic data are generated from the known all pole
coefficients and the estimated all pole ccefficients bv
the three systems are compared with the known all pole
coefficients under a reasonable criterion. In Section
VIII.3, the results of a subjective test to evaluate

the three systams as analysis/synthesis systems (potential

=

bandwidth compression systems) of noisy speech are discusse-.

If the estimated speech parametsers are properly coded,

then they would correspond to true bandwidth compression
systems. In Section VIII.4, the three systems are evaluated
as speech enhancement systems. In Section VIII.S5, scme

additional studies are discussed, in which a complete

1
-

¥
(]

analysis/synthesis system is used as input to a chann
vocoder. In Section VIII.6, the main results cbtained in

Chapter VIII ars sunmarized.

o
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VIIXI.2 Objective Evaluation

In this section, we discuss the performance of the
three systems developed in Chapter VI based on an objective
criterion. In Section VIII.2.l, the systems and their
parameters that are objectively evaluated are listed.
In Section VIII.2.2, we describe the objective criterion
used for the system evaluation. In Section VIII.2.3,
we discuss how the all pole coefficients are obtained to
generate synthetic data. 1In Section VIII.2.4, we describe ?
how the synthetic data generated are used to obtain a
measure that leads to the system evaluation under the
objective criterion disucssed in Section VIII.2.2.
In Section VIII.2.5, we discuss the results of the objective

evaluation.

VIII.2.1 Systems Evaluated

All three systems discussed in Chapter VII are
evaluated for taree cases per system. System A is evalua-
ted basea on the results obtained after one, two and
three iterations. System B is evaluated based on the
results obtained after two, five and ten iterations.
System C is evaluated Zor the cases when k=1,2, and 3. ;
The above nine cases are compared with each other and
with the case of System C when k=0 which corresponds to

the conventional linear prediction analysis. 1In all

cases, it is assumed that the a oriocri informaticn ¢f tha




Se

-179~

all pole coefficient vector is not available.
The systems and their parameters for which the

objective test is performed are summarized in Table 8.1.

VIII.2.2 Objective Criterion

One measurement is made for the objective evaluation.
The measurement made is LMSE which represents the
square error of the log magnitude spectrum. More speci-

fically, LMSE is given by

™

o) . D 4
LMSE = iL--M- [ (logil- T a,-e™3%%| - 1ogli- ] &, .e”7%%1)2.4,
s ‘ . 1 . 1
- i=1 i=1
p . .
- [y L] -le
1 T Tintee 2
== M [ (log|—=2 — ) <duw (8-la)
-7 1~ 7 a,.e” 9%t
i=1

and a and § represent the known all pole coefiicients from
which the synthetic data are generated and the estimated
all pole coefficients by one of the ten cases listed in
Table 8.l1. . In evaluating LMSE in equation (8-la), the
integral is replaced by a summation by sampling at w=%§ k

where M=512. The M used here is the same M in egquation

(8-la). Thus LMSE is evaluated by
) -j5 k-1
L M-l l'iélai'e 2
LUSE = 5 ; (log|—== e » (8-1b)
k=0 2 -3 ki
1- ) 4,7 "




Table 8.1

Systems Evaluated under an Objective Criterion

Cases Svstem Parameters A Priori Information
A-1 A one iteration none
A-2 A “wo iterations none
A-3 A three iterations none
B-2 B two iterations none
B-5 B five iterations none
B-10 B ten iterations none
c-1 C k=1 none
c-2 C k=2 none
c-3 C k=3 none

Ci
]
o
(@)
~
"
<o

none
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The criterion used here for the performance evaluation is
based on the studies [7] that indicate that the square
error of the log magnitude spectrum reflects reasonably
well the degradation of the perceptually important aspects
of speech.

In addition to the LMSE measure, another measurement,
LCSE, which represents the LPC Ccefficient Square Error
was also made. LCSE is defined as

LCSE (a.-d.) (8-2)

He-
o110

and a and 3 represent the known all pole coefficients from
which the synthetic data are generated and the estimated

all pole coefficients by one of the ten cases listed in

Table 8.1. The results based on this measure will not be
used for the system gerformance evaluation in the context

of speech analysis. However, LCSE is an interesting
quantity in that the all pole coefficients are the parameter
that are directly estimated in the systems developed in

this thesis. The results based on LCSE are summarized in

Appendix 2.

VIII.2.3 Generation of All Pole Coefficients

The follewing two s

=2
=

s are used to chtain one

ot
"3

T,
th

hundred sets of the all

-
=

[77]
r
o3
W
ct
v
H
1]
€
7]
1)
1,

le coecffiicie

(1]
3

0y
O

for generating synthetic data. The

(8 1)

1rst step involves

ol
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generating a tenth order all pole function in the form

of

H(z) = L (8-3)
1

5 1 . -
T\ (1-by+2” ") (1=by+2z" ")
k=1

where bk is chosen randomly from within a circle with

the radius of 0.98 in the z plane with equal a priori
probability for each point in the circle. The second

step involves generating the synthetic data of 256 points
long by exciting H(z) in equation (8-3) with white

Gaussian noise and then estimating the all pole coefficients
based on the synthetic data by the correlation method of

the linear prediction analysis. In generating the all

pole coefficients, the second step was necessary since

some all pole coefficients generated by the first step

alone were quite large in their magnitudes (sometimes
greater than 20) and the error measurement LCSE in eguation
(8-2) was dominated by the error due to a few such
coefficients. It was found that the second step essentially
forced the magnitudes of all the all pole coefficients
generated to be less than 4 withcut significantly changing
the locations and bandwidths of the poles generated by

the first step. One hundred sets of tenth order all pole
coefficients were obtained by the akbove two step procedure

and were used in generating the synthetic data for the
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objective evaluation.

VIII.2.4 Data Acquisition, Analysis and Results
Based on the one hundred all pole transfer functions
obtained in the manner discussed in Section VIII.2.3,
two hundred sequences were generated, one hundred
sequences by exciting with zero mean white Gaussian noise
and the remaining one hundred seqguences by exciting
with a train of pulses with the pulse spacing that
corresponds to the fundamental fregquency of 150 Hz.
Then for each of the two hundred sequences, noisy synthe-
tic data were generated by adding zero mean white Gaussian
background noise at the $/N ratios of -20, 0, 10, 20, and
40 dB. For each sequence of the noisy synthetic data
(one thousand sequences), the ten systems in Table VIII.1
were used to estimate the all pole coefficients. They
were then compared with the known all pole coefficients
from which the synthetic data were generated. Thus LMSE
in equation (8-1) and LCSE in equation (8~2) were obtained
for each of the one hundred sets of known all pole
coefficients as a function of the system type (ten
cases in Table 8.1), the type of excitation (random noise
or a pulse train) and the S/N ratio (-20, 0, 10, 20, and
40 dB). For notational convenience, we denote LMSE
(a - Sy Ej' R.) and LCSE(gn, S, Ej, R ) to represent

LMSE and LCSE that correscond to 2, Si' Ej and Rk' where
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a, represents the nth set of the all pole coefficients
and thus 1<n<1l00,

Si represents the ith system in Table 8.1 and
thus 1<i<10,

Ej represents the excitation type with E, and E2

1
corresponding to random noise and a pulse train

respectively,

and Rk represents the kth S/N ratio with Rl’Rz’R3’R4 and
R5 corresponding to -20, 0, 10, 20, and 40 dB
respectively.

Using this notation, we define LMSE and LCSE by

100
IMS R —3 l . -
LMSE(si,Ej,Rk) = T55 n__z-l LMSE(a,,S; (Ej/Ry) (8-4)
; loo ’

From equations (8-4) and (8-5), LMSE and LCSE represent
the mean LMSE and LCSE averaged over the one hundred sets
of the all pole cocefficients obtained in Section VIII.2.3
as a function of the system type, excitation type and s/N
ratio. IMSE obtained in this manner is tabulated in Table
8.2 and figures based on Table 8.2 are illustrated in
Section VIII.2.5 where we discuss the performance of
different systems under the objective criterion. LCSE

shown

is tabulated in Appendix 2. 1In Table 8.2 is also

the normalized LMSE which is cdefined by
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IMSE(S, ,E.,R,)

Normalized IMSE (S,,E.,R) = S R, (8-6)
b LMSE(SlO,Ej,Rk)

Since Slo corresponds to the conventional linear prediction
analysis that does not account for the presence of noise,
Normalized LMSE(Si,Ej,Rk) smaller than 1 indicates the

improvement of System Si over System S Normalized

10°
LCSE(Si,Ej,Rk) defined in an analogous manner as in

equation (8-6) is also tabluated in Appendix 2.

VIII.2.5 Discussions
In Figure 8.1 is shown iﬁgf(si,Ej,Rk) for 1<i<3
that corresponds to System A, 1<j<2 and 1<k<5. 1In
Figure 8.1l(a) is illustrated the case of j=1 that corres-
ponds to random noise excitation and in Figure 8.1l (b)
is shown the case of j=2 that corresponds to the case of
the pulse train excitation. In the figures, fﬁgﬁ(slo,Ej,Rk)
is also shown by a soclid line to facilitate the comparison
in terms of improvement over the conventional linear
prediction analysis. From Figure 8.1, the following
points are noted. First, System A is capable of performing
better than the conventional linear pradiction analysis
! for a wide range of S/N ratios. Second, System A shows

a better performance after two iterations than after one

iteration or three iterations at the S/N ratios above

-10 dB. This result is consistent with our observations in
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Chapter VII. Third, System A degrades guickly below
0 dB of S/N ratio and eventually performs worse than the
conventional linear prediction analysis. Therefore, =10
dB seems to be the lowest S/N ratio at which System A
shows some improvement over the conventional linear predic-
tion analysis. Fourth, even though there are detailed
quantitative differences, qualitatively speaking, the
performance of System A is essentially the same for both
types of excitations which are consistent with our obser-
vations in Chapter VII.

Figure 8.2 is essentially the same as Figure 8.1
with the difference in that LMSE is plotted to determine
the performance of System B. The three systems plotted
are B-2, B-5 and B-10 listed in Table 8.1. From Figure

8.2, the following points are noted. First, System B

is capable of performing better than the conventicnal
linear prediction analysis for a wide range of S/N ratiocs.
Second, System B performs better after more iterations

are carried out. Therefore, it apvears that the converging
solution is the optimum under the objective criterion.

This is consistent with our observations in Chapter VII.

It also appears that the results after ten iterations are

reasonably close to the converging solution. In Figure

8.2(a) is plotted a point (x) at the S/N ratio of 10 &B '
after 20 iterations and it is slightly better than the

results after 10 iterations. Third, System B degrades
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guickly below 0 dB of S/N ratio and eventu:lly performs
similarly to the conventiconal linear prediction analysis.
Therefore, -20 dB seems to be the lowest S/N ratio

at which System B shows some improvement over the conven-
tional linear prediction analyis. Fourth, the performance
of System B is essentially the same for both types of
excitations, which is consistent with our observations

in Chapter VII.

Figure 8.3 is essentially the same as Figure 8.1
with the difference in that LMSE is plotted to determine
the performance of System C. The three systems plotted
are C-1, C-2 and C-3 listed in Table 8.1. From Figure
8.3, the following peints are noted. First, System C
is capable of performing better than the conyentional
linear prediction analysis for a wide range of S/N ratios.
Second,System C with k=2 shows a better performance than
with k=1 or 3 at the S/N ratios abova -10 é3. This
result is consistent with our observations in Chapter VII.
Since k i1s a real number, there may be a mores optimum k
which is not an integer. To understand how much more
improvement can be made by a different choice of k,LMSE
(Si,El,S/N=lO dB) was computed for k between 1.0 and 3.0
sampled at twenty egually spaced points (i.e., k=1.1, 1.2,
ce:e+,2.8,2.9). It was fcund *that x=2.0 is the ortimum

5

among the 20 different values of k. Even though X has

not reen varied Zor all its possible values at the SN
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ratios considered, it appears that other choices of
k do not significantly improve the performance of System
C. Third, System C degrades quickly below 0 4B of S/N
ratio and eventually performs worse than the conventional
linear prediction analysis. Therefore, ~10 dB seems to
be the lowest S/N ratio at which System C with k=2
shows some improvemeﬁt over the conventional linear predic-
tion analysis. Fourth, the performance of System C is
essentially the same for both types of excitation which
are consistert with our observations in Chapter VII.

. In Figure 8.4 are shown the results of cases A-2,
B-10 and C-2 which seem to be approximately the best that
can be achieved by the three systems. The case of C-0
is also shown to facilitate the comparison with the
conventional linear prediction analysis. Figure 8.5 is
equivalent to Figure 8.4 except that Normalized LMSE
is plotted instead of IMSE. From Figures 8.4 and 8.5,
the following points are noted. First, below S/N ratio
of -20 dB, none of the three systems performs better
than the conventional linear prediction analysis. Between
=20 and -10 dB of S/N ratio, System B after ten iteraﬁions
performs best. Approximately from =10 dB to 20 é&B of
S/N ratio, System A after two iterations shows the best
performance. Between 20 to 40 4B of S/N ratio, System
C with k=2 performs best. However, the improvement of

System C over System A or System B is not large. Above the
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S/N ratio of 40 dB, all the three systems essentially
reach the same performance. This result indicates that
no one system performs best at all S/N ratios. Since
the intelligibility of speech changes between essentially

zero to near perfect in the range of S/N ratios between

-10 and 20 dB, System A after two iterations would be

most useful for various practical applications under
the objective criterion.

In Figure 8.6, the dotted line shows the best that
can be achieved by any combination of the three systems
discussed in Figures 8.4 and 8.5. The solid line
corresponds to the conventional linear prediction analysis.
Therefore, the difference between the solid line and the
dotted line shows the improvement that can be achieved
by any combination of the three systems developed in Chapter
VI. How this improvement translates to the improvement
in the listener's subjective domain is the topic of the

next section.

VIII.3 Subjective Evaluation: Potential Bandwidth
Compression Systems
In this section, we discuss the performance of the
three systems as potential bandwidth compression systems
of noisy speech. When the speech model parameters are
properly coded they would correspond to true bandwidth

compression systems. In Section VIII.3.1l, the test sentences
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that have been used in all the subjective tests are listed.

In Section ViII.3.2, the speech synthesis system used in syn-
thesizing speech based on the estimated all pole coefficients
by various potential bandwidth compression systems is dis-
cussed. In Section VIII.3.3, various systems are compared
with each other and based on a very informal listening, the
potential bandwidth compression system that performs best is
determined. In Section VIII.3.4, the system chosen in Sec-
tion VIII.3.3 is compared with the conventional linear pre-
diction analysis by fifteen listeners and the results obtained

are discussed.

VIII.3.1] Test Sentences

In all the subjective comparisons discussed in this
chapter, the folloﬁing five English sentences are used:

sentence 1l: They took the cross town bus. |

sentence 2: That shirt seems much too long.

sentence 3: He has the bluest eyes.

senten~e 4: The ball dropped from his hands.

sentence 5: Line up at the screen door.
Sentences 1, 3, and 5 are spoken by adult male'speakers and

sentences 2 and 4 are spoken by adult female speakers.

VIII.3.2 Speech Analysis/Synthesis System
In the analysis of speech, the all pole coefficients are

estimated by various different systems. The gain factor g is
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estimated by an energy consideration such that the synthe-

sized speech has the energy that is approximately equal to

! yz(n)-z E{a%(n)]. In the case of the conventional linear
;redictign analysis, the gain g is obtained such that the
synthesized speech has the energy that is approximately equal
to } yz(n). The source information consists of the voicing/
unvgicing decision and the pitch period in the case of voicing.

“ . The source information is obtained from the noise-free

speech and the same source information is used in all cases.

In the analysis, the number of all pole coefficients

. p is assumed to be 10, the analysis window used is a rectan-

gular window of 256 points long and after each analysis, the
window is moved by 128 points and therefore the current ana-
lysis window overlaps with the previous analysis window by
128 data points. Other choices of windows such as Hamming
window were also considered. The subjective improvements
by other choices of windows were minor in all cases.

In the speech synthesis, the system in Figure 3.1 is

used to generate speech.

VIII.3.3 Preliminary Comparison
' The synthesized speech at three S/N ratios (i.e. 20 4B,
i. . 10 4B, 0 4dB) by various systems listed in Table 8.1 has been
; compared informally with each other by a few listeners and the

following subjective judgements were made.
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VIII.3.3.1 Comparison of Systems A-1, A-2 and A-3

As the number of iterations of System A increases from
one iteration to three iterations, it has been observed that
speech sounds clearer and noise is reduced more. However,
some "musical tone" like background noise becomes more
apparent and intenser as the number of iterations increases.
It appears that such speech degradation is primarily due to
the possible incorrect estimation of the formant frequencies,
particularly at higher formants. As a reasonable compromise,

System A-2 appears to be better than either System A-1l or

System A-3.

VIII.3.3.2 Comparison of Systems B-2, B-5 and B-1l0
As the number of iterations of System B increases from
one iteration to ten iterations, it has been observed that

speech appears clearer and noise seems to be reduced more.

For System B, it appears that the performance of System B-10

is better than System B-2 or System B-5.

VIII.3.3.3 Comparison of Systems C-1, C-2 and C-3 . |
For the S/N ratios of 10 dB and 20 4B, it appears that
the performance of System C-2 is better‘than System C-1. At
the S/N ratio of 0 dB, System C-2 appears to generate clearer i
voiced sounds. However, many segments of unvoiced sounds
and the higher formants of voiced sounds essentially disappear

due to the subtraction of twice as much average short time
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energy spectrum of noise from the short time energy spectrum
of noisy speech when the noise level is high relative to
the signal level.

A comparison between System C-2 and C-3 indicates that
the performance of System C-2 is better than System C-3
at all three S/N ratios considered.

VIII.3.3.4 Comparison of Systems A-2, B-10 and C-2

At the S/N ratios of 10 and 20 dB, System A~2 appears
to generate more intelligible and higher quality speech
than System B-10 or C-2. At the S/N ratio of 0 4B, System
A-2 and B-10 perform better than System C-2. However, the
choice between System A-2 and System B-10 is difficult,
since System A-2 appears to have removed more random back-
ground noise but generated more "musical tone" like distor-
tion which is gquite pronounced at this S/N ratio. Despite
this difficulty, we have chosen System A-2 to be compared
to the conventional linear prediction analysis for a speech

preference test discussed in the next section.

VIII.3.4 Evaluation of System A-2 Relative to
Conventional LPC Method

In general, a fair evaluation of either a bandwidth
compression system or speech enhancement system should be
based on many factors such as intelligibility, speech
guality, listener fatique, etc. The main purpose of the

subjective tests in this dissertation is a preliminary

examination to determine whether or not the class
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of systems developed in this thesis deserve further
research efforts in terms of improving and evaluating
them. With such a purpose in mind, we have taken a very
limited point of view and performed a speech preference
test with a small amount of test material. The test

procedures and results are discussed in this section.

VIII.3.4.1 Test Material and Procedures

The test material consists of the five English
sentences described in Section VIII.3.l. The S/N ratios
considered in the test are 0 4B, 5 4B, 10 4B, 15 4B,
and 20 dB.

Two sentences were constructed for each of the five
English sentences and five $/N ratios based on the
analysis/synthesis system discussed in Section VIII.3.2.
One of the two sentences corresponded to System A-2
and the other sentence corresponded to the conventional
linear prediction analysis. Therefore, a total of
fifty sentences were constructed.

The test consisted of three sessions: one practice
session and two main sessions, Session I and Session II.
The practice session was intended primarily to acquaint
the listerners with the test procedures. Session I
was devoted to evaluating System A-2 as a potential
bandwidth compression system and Sessicn II was devoted

to evaluating System A-2 as a speech enhancement system.
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The test materials, procedures and results of Session
ITI will be presented in Section VIII.4 where we discuss
System A-2 as a speech enhancement system.

Session I consisted of five parts, each part
corresponding to one of the five S/N ratios. Each part
consisted of five trials. Each of the five trials
corresponded to one of the five English sentences. 1In
each trial, two sentences were presented, one of which
corresponded to System A-2 and the other corresponded
to the conventional linear prediction analysis. The
order of the presentation of the two sentences was
randomized in each trial.

The listeners were asked to judge in each trial
which of the two sentences was more preferable. It
was explained to the listeners that "more preferable"
could mean "more intelligible", "of higher quality",
"less noisy", any combination of them, etc. and it
was left entirely up to each individual listener to use
his own interpretation of "more preferable". In each
trial, the listeners were able to answer in five differ-
ent discrete categories: the first sentence is definitely
more preferable, the first sentence appears to be more
preferable, no preference between the two sentences, the
second sentence appears to be more preferable, and the

second sentence is definitely more preferable. It was

emphasized in the test that the judgement in each trial
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should be made as independently as possible of all the

previous trials.

VIII.3.4.2 Data Analysis and Results
Each response of a listener was converted to a
numerical value in the following manner:
2: System A-2 is definitely more preferable
l: System A-2 appears to be more preferable
0: no preference
-1l: The conventional LPC analysis appears to be

more preferable

-2: The conventional LPC analysis is definitely
more preferable

The numerical value assigned to each response was considered
to represent the preference index of System A-2 P(si,Lj,Rk) %
where Si represents the ith English sentence and thus
1<i<s, Lj represents the jth listener and thus 1<j<15
since fifteer listeners participated in the test, and Rk
represents the kth S/N ratio considered and thus 1<k<3
(k=1 corresponding to S/N=0 dB, k=2 corresponding to

S/N=5 dB, etc.). From P(si'Lj’Rk)’ P(Lj'Rk) was obtained

by

R RN
L}

5
1
= . Y L.y, -
) P(Lj,Rk) S i; P(Sl LJ Rk) (8=7)

1

) were |

. : _ 5
From P(Lj,Rk) in emation (8-7), PM(Rk) and (Rk !

“SsD




obtained by

PM(Rk)

Poo(®) = 5 [ (@®)-p@mn®1?  (s-sm)

Therefore, a positive PM(Rk) represents the preference
of System A-2 over the conventional linear prediction
analysis averaged over the five sentences used as test
material and fifteen listeners. The highest number
possible for PM(Rk) is 2. PSD(Rk) is the standard
deviation of P(Lj,Rk) and represents the variability

among the listeners in their responses.

PM(Rk) and PSD(Rk) are tabluated in Table 8.3 and
plotted in Figqure 8.7. The solid line in Figure 8.7
corresponds to PM(Rk) and the difference between the solid
line and either the upper or lower dotted line corresponds
to PSD(Rk). Even though the test was not performed at the
S/N ratio of -= or +«, we can deduce the results from
the theoretical considerations. At the S$/N ratio of =,
System A-2 is equivalent to the conventional linear
prediction analysis and hence we would expect that PM(S/N

ratio = «)=0. At the S/N ratio of ==, the preference if

any does not mean much.
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Table 8.3

Results of the Speech Preference Test in which System A-2
is Used as a Potential Bandwidth Compression System

S/N Ratio PM(Rk) PSD(Rk)
0 dB 1.413 0.529
5 &B 1.387 0.481
10 4B 1.040 0.662
15 4B 1.600 0.343
20 4B 1.293 0.473
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Figure 8.7 (a) Results of the speech preference test in which
System A-2 is used as a potential bandwidth compression
system. The solid line represents PM(R‘k)’ and the distance
between the solid line and the dotted line represents PSD<RJ<)
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VIII.3.4.3 Discussions

From the results in Figure 8.7 it is clear that
System A-2 is preferred over the conventional linear
prediction analysis at all the five S/N ratios that
have been considered. We conclude that these results
are sufficiently encouraging to devote further research
efforts in improving and evaluating a class of systems

developed in this dissertation.

VIII.4 Subjective Evaluation: Speech Enhancement Systems
As was discussed before, the systems that we developed
in Chapter V and Chapter VI can be used not only as
bandwidth compression systems but also as speech enhance-
ment systems. There are two ways that the systems
developed in this thesis can be used for speech enhance-
ment. One of them is to use the estimated speech s;(n)
as enhanced speech. An alternative way is to use the

analysis/synthesis system as a speech enhancement system.

Since a complete analysis/synthesis system requires

the systems as speech enhancement systems in this section
are restricted to the case in which the estimated speech

sw(n) is used as enhanced speech. Some discussions on

using a complete analysis/synthesis system for speech

enhancement are given in Section VIII.S.

In Section VIII.4.l, the speech enhancement systems
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that have been used for evaluation are specified. 1In
Section VIII.4.2, we remark briefly on the relative
performance of various systems listed in Table 8.1 as
speech enhancement systems. In Section VIII.4.3, the
performance of System A~-2 is evaluated by a speech

preference test.

VIII.4.1 Speech Enhancement Systems

The speech enhancement systems are based on the
estimated s;(n). In System A, s;(n) is obtained in
Step 2. In System B, s;(n) is obtained in Step 2B. 1In
System C, s;(n) is obtained in Step 2. The analysis is
again based on a tenth order all pole system with a 10 kHz
sampling rate. 1In the analysis, a triangular window of
400 points was used with a frame rate of 200 points per
frame. The estimated s;(n) is added back together in

the same way it has been analyzed as is shown in Figure

8.8.

VIII.4.2 Preliminary Comparison

The differences in performance among various speech
enhancement systems are very similar to the differences
in performance among various potential bandwidth
compression systems discussed in Section VIII.3.3. There-
fore, the discussions in Section VIII.3.3 alsoc apply to

the three systems as speech enhancement systems.
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Figure 8.8 Data segmentation for the analysis and construction
| ’ of speech in a speech enhancement system based on System A-2
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VIII.4.3 Evaluation of System A-2 as a Speech

Enhancement System

All aspects of the evaluation of System A-2 as a
speech enhancement system are identical to its evaluation
as a potential bandwidth compression system discussed
in Section VIII.3 with the following two differences. One
difference is that the comparison was made between noisy
speech and speech enhanced by System A-2 rather than
between synthesized speech by the conventional LPC
method and System A-2. Another difference is that System
A-2 as a bandwidth compression system was evaluated in
Session I as was discussed in Section VIII.3, while
System A-2 as a speech enhancement system was evaluated
in Session II of the speech preference test. The
responses obtained in Session II of the speech preference
test were analyzed in the same manner as those obtained
in Session I. To differentiate the results of Session II

from Session I, we use Q(si'Lj’Rk)' Q(Lj'Rk)’ QM(Rk)'

QSD(Rk) in place of P(si'Lj’Rk)' P(Lj,Rk), PM(Rk)'
PSD(Rk) to denote the preference index obtained from the

responses in Session II. Therefore, Q(Si,Lj,Rk) denotes
the preference index as a function of the ith English
sentence, jth listener and kth S$/N ratio. The equations

parallel to eguations (8-7) and (8-8) are

5
ALy R =3 T QS LRy (8-9a)
i=
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15
= L -
Qu(R) = 15 j£1 QL4 Ry) (8-9b)
15 z
= [k - 2,2 )
Qp(Ry) = 53 j£1 (Qy (Ry) =Q(Lys Ry )) “] (8-9¢)

Like PM(Rk), a positive QM(Rk) represents the preference
of enhanced speech by System A~2 over the noisy speech
averaged over the five sentences used as test material
and fifteen listeners. The highest value possible for
QM(Rk) is 2. QSD(Rk) is the standard deviation of
Q(Lj,Rk) and represents the variability among the listen-
ers in their responses.

QM(Rk) and QSD(Rk) are tabulated in Table 8.4 and
plotted in Figure 8.9. The solid line in Figure 8.9
corresponds to QM(Rk) and the difference between the solid
line and either the upper or lower dotted line corresponds

to QSD(Rk)' For the same reasons discussed in Section

VIII.3, QM(S/N=w) would be zero and QM(S/N=-w) does not
mean much.

Unlike the results of System A-2 as a potential
bandwidth compression system, enhanced speech processed
by System A-2 is preferred only at relatively high S/N
ratios. At lower S/N ratios, the "musical tone" like
background noise which arises vrimarily from the discon-
tinuities of the upper formant frequencies in a frame by

frame analysis scheme is sufficiently noticeable that the i
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S Table 8.4

Results of the Speech Preference Test in Which
System A-2 is Used as a Speech Enhancement System

S/N Ratio Oy (Ry) Qgp (Ry)

0 dB ~-0.240 1.079

5 dB 0.240 1.023

10 4B 0.293 0.867

15 48 0.467 1.042

| 20 4B 0.747 0.728




S/N

Figure 8.9 Results of the speech preference test in which
System A-2 is used as a speech enhancement system. The solid
line represents QM(Rk), and the distance between the solid

line and the dotted line represents QSD(Rk).
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noise reduction by System A-2 does not sufficiently
offset the speech degradation for some listeners. The
responses of the listeners also indicate that some
listeners have strong preference for processed speech
while some other listeners have strong preference for
unprocessed noisy speech. This is reflected by the
large standard deviation shown in Figure 8.9.

In the context of this thesis, there are several
methods that may be used to eliminate or mask the
"musical tone" like background noise and they will be
discussed in Chapter IX where various improvements are

suggested for the class of systems developed in this thesis.

VIII.5 Additional Studies

VIII.5.1 Speech Enhancement by a Complete Analysis/

Synthesis System

In the context of the work in this thesis, speech
enhancement may be achieved by a complete analysis/synthe-
sis system. To consider the feasibility of such a scheme,
the speech material synthesized based on System A-2 in
Section VIII.3 were compared with the enhanced speech
obtained in Section VIII.4. Above the S/N ratio of about
10 dB, the enhanced speech in Section VIII.4 appeared to
sound better, while below the S/N ratio of about 10 d&B

the opposite appeared to be true. It is difficult to
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interpret this result for several reasons. The source
information used in the synthesis of speech in Section
VIII.3 was obtained from noise-free speech. Such an
accurate source information is not available in practice.
On the other hand, the source model (random noise or a
train of pulses) used is a very simplified one and a
more sophisticated excitation source such as voice
excitation may improve the quality/intelligibility of
the synthesized speech. Without further study in this
area, the informal listening results imply that with
the simple source model and System A-~2, the approach

to use the estimated s;(n) as enhanced speech is better

than the approach to use an LPC analysis/synthesis

scheme above the S/N ratio of 10 dB.

VIII.5.2 System A-2 as a Pre-processor for Other
Bandwidth Compression Systems
As has been discussed in Chapter III, the fact that

S, 1s estimated in addition to a is important in the

20
context of bandwidth compression of noisy speech as

well as speech enhancement. This is because if we

estimate only a, then we are limited to a class of vocoding
systems known as "LPC" vocoders.

As an example of using the class of systems developed

in this dissertation as pre-processors for other vocoding

systems, enhanced speech by System A-2 was processed by a
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real time channel vocoder at Lincoln Laboratories and was
compared to speech processed by the same vocoder with
the unprocessed noisy speech as input. Based on informal
listening, it appears that the improvement made by
System A-2 is comparable to the improvement discussed
in Section VIII.3 where System A-2 as a potential band-
width compression system was compared to the conventional

linear prediction analysis.

VIII.6 Summary

In this chapter, the three systems developed in
Chapter VI have been evaluated under both an objective
and subjective criteria. Under the objective criterion

with the selection of the test material discussed in

e

Section VIII.2, we conclude that all the three systems
developed in Chapter VI with a proper choice of

the parameters perform better than the conventional linear
prediction analysis above -10 dB of theVS/N ratio. Below
-20 dB of the S/N ratio, none of the three systems performs
any better than the conventional linear prediction
analysis. Among the class of sysfemslimplemented in

this dissertation, System A after two iterations performs ]
best under the objective criterion at various S/N ratios

of practical interest.

As a preliminary examination toc determine whether or

not the class of systems developed in this thesis have
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potential to be used as bandwidth compression and speech

enhancement systems of noisy speech, System A has been
evaluated by a speech preference test. The results of
the test indicate that System A is clearly preferred

over the conventional linear prediction analysis as

a potential bandwidth compression system. In the context
of using System A as a speech enhancement system, the
results are not as positive. However, there are a number
of improvements that can be made as we will discuss in
Chapter IX. Based on the evaluation performed in this

chapter, we conclude that the results obtained are

‘sufficiently encouraging to invest further research

efforts in improving and evaluating the class of systems

developed in this dissertation.
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CHAPTER IX FUTURE RESEARCH

IX.1l Introduction

In this chapter, we discuss a number of areas for
future research that are related to this dissertation.
The areas of future research can be broadly classified
into three different categories. The first category
is improving the systems implemented in this thesis and
is discussed in Section IX.2. The second category is
issues related to adapting the systems to real world
situations and is discussed in Section IX.3. The third
category is the theoretical issues and systems for

theoretical interest and is discussed in Section IX.4.

IX.2 Improvements

A serious attempt has not been made in this
dissertation to improve the performance of the systems
implemented in this thesis. A few simple modifications
may improve the performance of the systems developed.
In this section, such modifications are discussed.

To indicate some potential areas in which some
improvement can be made, three spectrograms are shown
in Figures 9.1, 9.2 and 9.3. Figure 9.1 represents the
spectrogram of noise-free speech that corresponds to
"Line up at the screen door". Figure 9.2 represents
the spectrogram of synthesized speech by the conventional

LPC method at the S/N ratio of 0 dB. Figure 9.3 represents
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the spectrogram of the synthesized speech by System A-2
as a potential bandwidty compression éystem at the S/N
ratio of 0 dB. Comparing Figures 9.1 and 9.3, it is
clear that there are at least two main problems that
cause speech degradation in the process of reducing the
background noise. One of them is the non~-smooth formant
transitions. This problem occurs when the formant
frequencies of speech change relatively fast and the
frame rate is low in a frame by frame analysis environment.
Such a problem may cause some speech degradation and can
be solved by a higher frame rate with some optimization
of the analysis window length, window type, or an inter-
polation scheme between frames in the synthesis. The
second problem which is more serious arises due to the
errors made by System A in estimating the formant frequen-
cies. Such errors cause discontinuities in the formant
frequencies, and occur more often in the higher formants
where the local S/N ratio is relatively low. Such formant
discontinuities are probably the primary cause of the
"musical tone" like background noise discussed in Chapter
VIII. In the remainder of this section, several ways
that may sclve or reduce the effect of the formant

discontinuity problem are discussed.

IX.2.1 Incorporation of A Priori Information

In the theoretical results develoved in this disserta-
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tion, it is possible to incorporate a priori information
of a. One potential source from which some a priori
information can be obtained is from the nearby analysis
frames. Since the human vocal tract can not move

arbitrarily fast, the results of one analysis frame are

- in some sense correlated with the results of the .

next analysis frame except at rapid onset or change.
One way to incorporate the results of the past analysis
frames in the analysis of the current frame is to
determine p(a), the a priori density of a, in terms of
the results of the previous analysis frame.

Some very preliminary experiment in which p(a) is
assumed to be N(2,P,) where a is the estimated & in
the previous analysis frame and Py is cz-I for some 02
indicates that adding some a priori information from
the previous analysis frame to the current analysis
frame can reduce the "musical tone".like background

noise. Some optimization in the choice of § and P, may .

0
lead to some noticeable improvement.

IX.2.2 Smoothing Formant Frequencies

One effect of adding some a priori information in
a manner discussed in Section IX.2.1 is smoothing the
estimated all pole coefficients a of the individual

analysis frames. Even though such a method to some extent

leads to indirectly smoothing the formant freqguencies and




-224-

thus eliminating the formant discontinuities, a more
direct way would be to smooth the formant frequencies
themselves. Such a direct procedure has the additional
advantage that the formant frequencies can be smoothed
discriminately. More specifically, in the white back-
ground noise environment the upper formant frequencies

are degraded more often than the lower formant frequencies
and therefore it may be desirable to smooth only the

upper formant frequencies.

Such a smoothing procedure can eliminate the discon-
tinuities in the formant frequencies and thus may reduce
the "musical tone" like background noise. Furthermore,
when the S/N ratio is relatively high such that the
errors in the estimation of the formant frequencies do
not occur often, the smoothed formant frequencies can in

fact correspond to the true formant freguencies.

IX.2.3 Masking with Random Noise

As we discussed in Section II.2.6, in a recent
study, Schwartz,et al. [19], considered a system which
is a modification ©of System C discussed in this thesis
for speech enhancement. In the process of eliminating
the effect of the background noise, System C creates some
artificial speech decgradation. Schwartz,et al. hypothe-
sized that such a degradation arises due to setting the

. 2,
estimate of [Sw(w)iz to zero when IYw(w)I is less than
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k-E[lD(w)Izl. Therefore, in their speech enhancement
system, in place of zero IS;(m)lz was set to
B-E[tDw(w)Izl for a very small value of 8 if le(w)Iz

is less than (k+8)-E[|Dw(m)|2]. When such a modification
is made, Schwartz,et al. has found that some speech
degradation due to processing which is uncomfortable

to listen to disappeared.

One explanation that such a thresholding method can

reduce some perceptually undesirable speech degradation
is that it is a way of masking the speech degradation.
Based on this explanation, then, an alternative way to
mask the speech degradatior which is easier to implement
than the threshold method is to simply add some random
noise to the processed Speech. The concept of masking
the artifical speech degradation is not limited to System
C but can be applied to any system which generates some
perceptually undesirable speech degradation. The amount
of noise necessary to mask the speech degradation depends
on the level of the speech degradation that is to be
masked. In a very preliminary experiment, the processed
speech by System A has been added with some white random
noise. The reasonable level of noise added to mask

the "musical tone" like background noise is about 15 4B
below the original background noise level. 1If the process-
ing suggested in Sections IX.2.1 or IX.2.2 is carried out

successfully and thus reduce the level of the "musical tcne"
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like background noise, then it is expected thaf even a
lower level random noise than 15 dB below the original
noise level mav be able to mask the perceptually unpleas-
ant speech degradation due to processing by System A-2.
Further, if the speech degradation occurs primarily in
the higher frequency regions in which the local S/N

ratio is relatively low, then adding high pass filtered
noise may be more desirable. A further study should be
carried out in determining the proper noise level and the
type of noise necessary to mask the speech degradation
that occurs by processing noisy speech with the class of

systems developed in this dissertaion.

IX.3 Adaptation to Practical Problems

There are many issues which require further study
in implementing the class of systems developed in this
thesis in practical environments. In this section, we

discuss some of these issues.

IX.3.1 Estimation of Pd(m)

In the systems discussed in this thesis, the power
spectrum of the backgroun noise Pd(w) is assumed to be
known. In practice, Pd(w) has to be estimated from the
noisy speech y(n). 1If the silence intervals are to be

used for the estimation of Pd(u), a silence detector from the

noisy speech has to be incorpcrated in the overall system.
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A related study to the estimation of Pd(w) is to
determine the sensitivity of the performance of the systems
developed in this thesis to a possible incorrect estima-
tion of Pd(m). A system which performs well when Pd(u)
is correctly estimated may degrade gquickly as the estimated
Pd(m) differs from the true Pd(m). The sensitivity

issue is an important area to be investigated.

IX.3.2 Estimation of Source Information

To develop a complete analysis/synthesis system
based on the theoretical results developed in this
thesis, it is necessary to develop an algorithm that
estimates the source parameters. In the context of this
dissertation, we may simply apply existing pitch detectors
{40,41,42] to the estimated s;(n). Alternatively, there
may be a more optimum way of obtaining the source infor-
mation that accounts for the presence of background
noise. The estimation of the source parameters from the

noisy speech is an important area for future research

in developing a complete analysis/synthesis system.

IX.3.3 Evaluation of Systems
After some further study on the system improvement,
it is important to evaluate the systems in terms of their

performance in improving speech intelligibility, guality,

etc. The choice of the system may depend on the specific
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background noise environment, cost of implementation, etc.

IX.4 Further Theoretical Study and Related Work

IX.4.1 Implementation of Other Systems

In this dissertation, we considered estimating a
by maximizing p(glxo). Since maximizing p(glxo) is a non-
linear problem, we considered "sub-optimal" procedures

in which p(a, is maximized. An attempt to maximize

Sol¥y)
p(g.golzo) led to the LMAP and RLMAP algorithms which
require solving only sets of linear equations in an
iterative manner. Further approximations of these algo-
rithms led to System A and System B which were implemented.
An important area of future research from a theoretical
point of view is a theoretical understanding of the relations
and properties of the MAP, LMAP and RLMAP algorithms, and
their implementations. As we discussed in Section V.6,
a theoretical study to understand the relations and
properties of the three algorithms is currently in progress.
The implementation of the MAP algorithm is important since
the results obtained by maximizing p(g]zo) are the optimum
that can be achieved if we follow the philosophy that is
taken in this research. The implementation of the LMAP
and RLMAP algorithms is important since it allows us to
understand the performance degradation due to the approxima-
tions made in developing System A and System B3 from the

LMAP and RLMAP algorithms. It alsc allows us to understarnd
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the effect of changing the problem from maximizing

! i ;
?(2120) to 9(3,50,10). A comparison of the MAP, LMAP,
RLMAP methods, System A and System B in terms of their
performances can be a basis for determining the extent
of further research efforts in developing a different

approximation method to the true MAP estimation procedure.

IX.4.2 Different Initial Estimates of a

In the IMAP, RLMAP algorithms, System A and System B,
we begin from some initial estimate of a. 1In the systems
that were implemented, the initial estimate was obtained
by simply applying the correlation method of linear
prediction analysis to the noisy speech. Since the LMAP
and RLMAP algorithms are not guaranteed to give the

global maximum of p(glxo) or pla, ), other initial

%o'%o
estimates of a may lead to different estimates of a.
Beginning from other initial estimates of a can be
useful in at least two different ways. First, they may
lead to better estimates 0f a. Second, the primary
disadvantage of System B relative to System A is its
slow convergence to a reasonable solution. If we begin

from scme other initial estimates of a, System B may

converge :0 a solution more guickly. This is an area for

further study.
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IX.4.3 Incorporation of A Priori Information

There are many levels in incorporating a priori

information based on the knowledge that the noisy signal
we deal with is speech plus noise. In one extreme, we
could add some a priori information in a manner similar
to the discussions in Section IX.3. 1In the other extreme,
we may want to capitalize more fully on the physiological
constraints imposed by the human vocal mechanism and

even the linguistic constraints imposed by the rules

of the language. Since any accurate extra information
added in estimating the speech parameters can potentially
lead to a better estimate, such additional knowledge may
be important in dealing with the noisy speech. To
understand what knowledge of speech we can capitalize

on and how such knowledge can be used to estimate the
speech parameters better is an important area for future

research in many areas of speech processing.

IX.4.4 Excitation by a Train of Pulses

In the theoretical development in this dissertation,
various systems were developed based on the assumption
that the excitation is white Gaussian noise and we simply
applied the same systems to both unvoiced and voiced

sounds. If we estimate the system parameters of voiced

speech based on %he assumption that the excitation is a

train of pulses, then a better estimate of the speech
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parameters may perhaps be obtained. Since a majority
of speech sounds are voiced and the voiced sounds are
very important in the perception of speech, an attempt
to estimate the speech parameters of voiced sounds more
accurately appears attractive. The notion to capitalize
on the periodicity of voiced socunds is also related to
the incorporation of more knowledge of speech in estimating

the speech parameters.

IX.4.5 Pole-Zero Modelling

In the theoretical development in this thesis, we
have assumed an all pole transfer function in the underlying
speech model. In a stationary background noise environ-
ment, the low energy speech segments such as unvoiced
speech degrade more quickly due to the relatively low

S/N ratio and thus are probably an important factor in

decreasing speech intelligiblity. Since unvoiced speech
can be better modelled by a pole-zero than an all pole
transfer function, the approach to use a pole-zero system
may lead to a better performance and it is an important

area for future research.
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CHAPTER X CONCLUSION

In this thesis, the prpblem of enhancement and band-
width compression of noisy épeech was formulated as a
parameter estimation problem, in which we attempted
to estimate the parameters of an underlying speech model
from the noisy speech based on the MAP estimation proce-
dure. Such an approach led to two algorithms which
require solving sets of linear equations in an iterative
manner. Some approximatiocns of the two algorithms led
to two systems which are computationally simpler than the
two algorithms by taking advantage c¢f a high speed FFT
algorithm.

As a preliminary investigation into the performance
of the two systems develcoped in this thesis, the two
systems were implemented and applied to both real and
synthetic speech data. An objective and informal subjective
evaluation indicate that the systems implemented perform
well as enhancement and potential bandwidth compression

N systems of noisy speech.

A number of studies were suggested for future research
in this thesis. They include various improvements and
furtrer evaluation of the syétems implemented in this thesis,

I, . implemantation and evaluation of other systems developed
; but have not been implemented in this thesis and develop-
- ment of new systems by incorpcratinq more knowledge of

speech.
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APPENDIX

In Appendix I, we summarize briefly the notations
that have been used in the thesis. In Appendix II,
a table of LCSE and Normalized LCSE which were discussed

in Section VIII.2 is shown.




-238-
APPENDIX I SUMMARY OF NOTATIONS

: (al,az,....,ap)T, an all pole coefficient vector,

T represents transpose of a matrix

i

a: a priori mean of a
a,: ith estimate cf a
. A(w): Fla(n)], discrete time Fourier transform of a(n)

) A: 0 a; a, ap 0 OT
‘e 0 al a2 ap 0 A
0 al \“‘ . . 0
0 al \\‘ ap
0 NN
0
s 32
{ [ a%J

Q. )ecees @ N
l -l’ a
P P

‘e e

B(w): PF[(B(n)], discrete time Fourier Transform of 8(n)
d(n): disturbance or background noise; assumed to be
generated by a Gaussian random process

dw(n): d(n)-ws(n), windowed background noise

- .~ - e e - PR . ‘_I
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dlngmy):  (A(ny),.en.,d(ng) T

dy: 4(N-1,0), a vector of background noise
M-1 -32% ken
DFT(x(n)]: X(k) = [ x(n)-e . M point Discrete

n=0
Pourier Transform of x(n)
E[x]: expected value of x

sp: error function to be minimized

m 0
J  x(n)-e”3%?, aiscrete time Fourier

n=-—wx

Flx(n)]: ZX(w)

Transform of x(n)

T .
F 1[x(w)1: x{(n) = %# f X(w)+-e3“P.du, the inverse discrete
-T
time Fourier Transform of X(w)
g: gain factor
H(z): 2z transform of the transfer function in the under-
lying speech model
1 M-1 j%} ken
IDFT(X(k)]: x(n) = & I X(k)-e , the Inverse Discrete
k=0

Fourier Transform of X(k)

k(n): Kalman filter gain
-1
m.: (I-3) Ar-s;
. e {4 i
m: mean of s, conditioned on a and y,

N(A,B): Gaussian with mean of A and covariance of B

Po: a priori covariance of a
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.3 e
P(w: ] R.(n)ee

n' the power spectral density of

x(n)
p(AO): probability density function of A, or probability

density function evaluated at A=A see footnote 2

o;

p(AOIBO): analogous to p(AO) with the conditional density
function

Rx(n): Elx(k)-x(k-n)] for a stationary signal x(n), or

correlation of x(n)

Ry g%+ (z-a) "t ((z-m™H T
T

Ry* Eld,-d,]

s(n): signal or speech

s _(n): s(n)-ws(n), windowed speech
T

s(ny/ny): (s(ng),....,s(ny))
: s(N-1,0)
: the ith estimate of S5
_S.I: i(-l’-p)

@ —4
S(w): Z s(n)-e an, discrete time Fourier Transform of
s{n)

|S(w)]: magnitude of S(w)

¥S(w): phase of S{w), also denoted as <S({w)
u(n): a pulse train or random noise excitation
u(n): an excitation vector, typically 2ero mean white

Gaussian noise

Var(x]: wvariance of x

ol
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v(n): an observation vector, typically zero mean white
Gaussian noise

V: covariance of s, conditioned on a and ¥y

w(n): zero mean white Gaussian noise with unit variance

Ws(n): a smooth window function

x(n): a state vector

x(-1): the initial state vector

QML: Maximum Likelihood estimate of x

Xyap: Maximum A posteriori estimate of x '

>

XyMSE* Minimum Mean Square Error estimate of x
v(n): s(n)+d(n), noisy signal or noisy speech
yw(n): y(n)’ws(n), windowed noisy speech

T
¥(n;/nj5): (y(nl) seeeery(ng))

Yot Y(N-1,0)
@« .
Y (w): ) y(n)-e3“?, the discrete time Fourier Transform
nN=-®
of y(n)
|¥(w)|: magnitude of Y(w) R
3¥(w): phase of Y(w), also denoted as <Y (w)

z(n): an observation vector
@«

¢x(n): ¥ xw(k)'xw(k-n), the short time correlation of

=0

x(n)

®x(w): F[¢x(n)]




B(w):
T(w):

@;(n):
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n0+M—l :
) x(L) *x(2~n), another definition of the
L=n
0

short time correlation of x(n); note that
*
¢x(n) # @x(n)

Fl8(n)]

Fly(n)]
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